Together, let’s put an end to deteriorating health

Staff of Life
Staff of Life
Staff of Life

Staff of Life

Optimal GI Support

$94.98

Seann and I have known for many years that there is something exceptional about the Staff of Life formula. These ancient seeds have a certain energizing and empowering properties that nourish us on a fundamental level.*

Maybe because these seeds have been used for thousands of years in healing ceremonies that we feel so deeply nourished and in such a fundamental way.  And maybe because these seeds were revered spiritually because they literally supplied life sustaining nutrients.* 

It goes further than that.

There is a basic happy elevation of feelings and emotions that these seeds give us – that is the energy that you feel when you take the blend in the morning or before your run or exercise. It is truly magical what certain foods do to our body and mind.*

And yes, as usual, you will see in the description and research tabs, and the news blog, all the amazing scientific studies, with accurate description of each seed and the research of their different health effects, nourishment stats, and nutritional profiles. You know how thorough we are with research findings.

But do keep in mind the magic and power as well, after all, life is so much more pleasing when each cell in our body is buzzing with life's energy.*

Staff of Life is Organic, Vegan, Kosher, Non GMO, and Gluten Free.

Daily fiber intake is shown in research as one of the most important health requirements. However, optimum levels are rarely achieved, most Americans only consume about 15 g of fiber instead of the recommended 25 g of fiber for adult women and 38 g fiber for adult men (American Dietetic Association, 2008; Kranz et al., 2017). Eating enough fiber is important to our physical health but also our financial health. A Canadian research team discovered that eating enough dietary fiber enhances health and reduces costs for health care (Abdula et al., 2015). This conclusion aligned with the research of Schmier et al. in 2014. The position of the American Dietetic is based on epidemiologic studies showing fiber offers protection against several chronic diseases such as cardiovascular, including blood pressure, lipid levels, and inflammation (p. 1719-20; Gabrial et al., 2016; Cooper et al., 2017). Data also show a correlating relationship between dietary fiber and cancer with studies supporting the theory that dietary fibers offer protection against cancer (ADA, 2008, p. 1723).*

Staff of Life is a global blend of powerful nutrients and dietary fiber that is comprised of indigenous organic whole seeds: Amaranth, Quinoa, Buckwheat, Chia and Millet (which some think of as also a grain). The Aztec people developed amaranth; the Incas raised Quinoa, while buckwheat was native in Asia, parts of Europe and the USA. Chia is a revered seed that is native to central and southern Mexico and Guatemala. Millets are a group of indigenous small-seeded grasses, especially known in Africa and Asia but are cultivated and enjoyed all over the world.

These ancient seeds have been with us for thousands of years. The Staff of Life's five seeds are grown organically in the USA, and through a patented high pressure, heat-shearing process, the soluble fiber and nutrients of the five seeds are released to offer an ideal amount of plant-based protein, complex carbohydrates with low glycemic index, gentle dietary fiber, vitamins and minerals, polyphenols, and so much more. All easily digested.

Adding a tablespoon or two of Staff of Life to your morning shakes, cereals, baked goods, and even soups, adds dietary fiber and nutrients that contribute positively to a host of health benefits such as: cardiovascular health, reduction of fatty liver (van Gijssel et al., 2016; Georgoulis et al., 2014; Grooms et al., 2013, respectively), lasting energy, weight management (de Vries et al., 2016; Albertson et al., 2016; Lambeau et al., 2017), daily regular bowel movements (American Dietetic Association, 2008; Seal & Brownlee, 2015), the list of benefits is long.*

Quinoa (Chenopodium quinoa) was revered as sacred by the Incas, and rightly so as it is considered to be a super food. The quinoa plant was cultivated along the Andes for the last 7000 in challenging environments developing into highly nutrient seed (Vega-Gálvez et al., 2010). Uniquely balanced in all nine essential amino acids needed for tissue development in humans, it is one of the best plant sources of proteins, with protein content of 15%, dietary fiber, vitamins, minerals, vitamin e, and omega oils (Abugoch, 2009; Graf et al., 2015; Nowak et al., 2016). Quinoa is higher in calcium, phosphorus, magnesium, potassium, iron, copper, manganese, and zinc than wheat, barley, or corn. Quinoa is one of nature's most complete foods. It's glycemic load is 18. Since Quinoa is gluten free, it is a healthy dietary fiber for those who suffer celiac disease (Filho et al., 2017; Alvarez-Jubete et al., 2009). Because of its low glycemic index, quinoa and buckwheat offer an important nutritious food and dietary fiber to improve insulin resistance and offer glycemic control for type 2-diabetes (Gabrial et al., 2016). Quinoa and amaranth are also shown to have high amounts of antioxidant activity, phenolic and flavonoids power, and hence believed to offer anti-inflammatory and antioxidant potential (Nsima et al., 2008; Tang et al., 2016, 2015).*

Amaranth (Amaranthus hypochondriacus) was used by the Aztecs both for food and in their religious ceremonies. It has 12% protein and is high in lycine and methionine (amino acids), fiber (three times the fiber of wheat), iron (five times that of wheat), K, P and Ca (two times more than milk), Vitamin A and C. It is 90% digestible. Amaranth's glycemic load is 21 (Mota et al., 2016; Nascimento et al., 2014). Amaranth is shown to have high dietary fiber for daily regularity (Lamothe et al., 2015), and is an excellent fiber for celiac disease (Ballabio et al., 2011). Amaranth confers many other health benefits, including decreasing plasma cholesterol levels and stimulating the immune system (Caselato-Sousa et al., 2015; Soares et al., 2015; Czerwiński et al., 2004), and antioxidants and phenols to protect and support the liver (López et al., 2011). Amaranth is also found in research to contain phytochemical compounds as rutin, nicotiflorin, and peptides that offer antihypertensive and anticarcinogenic activities (Maldonado-Cervantes et al., 2010; Silva-Sánchez et al., 2008).*

Buckwheat ( Fagopyrum esculentum) is over 8000 years old as a human staple. The Yi people of China consume a diet high in Buckwheat. When researchers tested blood lipids of 805 Yi Chinese, they found that buckwheat intake was associated with lower total serum cholesterol, lower LDL, and high HDL (Kumar et al., 2015). Buckwheat is an excellent source of lysine, threonine, tryptophan and sulfur amino acids. Buckwheat's glycemic load is 44, with high content of flavonoid (Quettier-Deleu et al., 2001), high rutin content in the bran (Gabrial et al., 2016; Bai et al., 2015, respectively), and even higher antioxidant activity of catechins (Watanabe, 1998). The buckwheat amino acid composition is contributed to its cholesterol lowering power, antihypertension effects, and dietary fiber for regularly (Li, 2001).*

Chia (Salvia hispanica L.) is a magical whole seed. It's use as energy, life sustaining food dates back 5, 500 years. It is 20% protein, 25% dietary fiber, has an unusually high level of omega-3 and omega-6, vitamins, minerals and high source of antioxidants (Marchinek & Kreipcio, 2017; Chicco et al., 2009; Ulah et al., 2016). Aztec warriors subsisted primarily on Chia. It is called the running food: Native Americans running from the Colorado to the California coast to trade turquoise for seas shells would only bring Chia seeds for their nourishment (Sreeremya, 2017; Kreiter, 2005). Chia's glycemic load is 1. Chia is shown in research to have good protein quality, improves lipid profiles and supports the liver (da Silva et al., 2016; Jin et al., 2012; Mohd Ali et al., 2012). The ancient seed of Chia is a great source of dietary fiber, a benefit for the whole digestive system (Ullah et al., 2016).*

Millet (Panicum Miliaceum) is an ancient seed that is over 10,000 old, a major source of food for energy (Habiyaremye et al., 2016; Saleh et al., 2013). A non-acid forming food, millet is easy to digest and considered to be one of the least allergenic seeds (Gupta et al., 2014). Proso Millet (panicum Miliaceum) contains significant amounts of amino acids, especially methionine and cysteine, demonstrating a protein quality of 51% higher than wheat. Millet is also found to contain dietary fiber, B Complex, vitamins (including niacin, thiamin, folic acid and riboflavin), minerals (Ca, Fe, K, Mg, Zn, P), and a significant amount of amino acids (especially methionine and cysteine), and lecithin (Amadou & Gounga, 2013; Gupta et al., 2014). Millet confers many health benefits due to its high nutrients quality and phytochemical profile (Pathak, 2013), including prevention of cancer (Zhang et al., 2014; Shahidi & Chandrasekara, 2013; Chandrasekara & Shahidi, 2011), diabetes (Kam et al., 2016), liver support (Nishizawa et al., 2002), and protection against degenerative diseases (Pathak, 2013). Millet is a staple food of the Hunzas, a society renowned for robust longevity. Millet's glycemic load is 21.*

Staff of Life can be mixed with Beta Glucan for the added benefit of oat beta glucan (99.98% gluten free) and red beet root for added dietary fiber and probiotics or taken with the Original Synbiotic Formula (100% gluten free) to add inulin fiber fro chicory root and our excellent probiotics for daily regularity.

REFERENCES

Abdullah, M.M., Gyles, C.L., Marinangeli, C.P., Carlberg, J.G., Jones, P.J. (2015). Dietary fibre intakes and reduction in functional constipation rates among Canadian adults: a cost-of-illness analysis. Food Nutr Res, 59, 28646. Article

Abugoch James, L.E. (2009). Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Adv Food Nutr Res, 58, 1-31.DOI: 10.1016/S1043-4526(09)58001-1

Albertson, A.M., Reicks, M., Joshi, N., Gugger, C.K.(2016). Whole grain consumption trends and associations with body weight measures in the United States: results from the cross sectional National Health and Nutrition Examination Survey 2001-2012. Nutr J. 15, 8. DOI: 10.1016/j.jada.2006.06.003

American Dietetic Association (2008). Position of the American Dietetic Association: Health implications of Dietary Fiber. Journal of the American Dietetic Association, 108(10), 1716-1731. https://doi.org/10.1016/j.jada.2008.08.007

Bai, C.Z., Feng, M.L., Hao, X.L., Zhong, Q.M., Tong, L.G., Wang, Z.H. (2015). Rutin, quercetin, and free amino acid analysis in buckwheat (Fagopyrum) seeds from different locations. Genet Mol Res, 14(4), 19040-8. DOI: 10.4238/2015.December.29.11

Ballabio, C., Uberti, F., Di Lorenzo, C., Brandolini, A., Penas, E., Restani, P.(2011). Biochemical and immunochemical characterization of different varieties of amaranth (Amaranthus L. ssp.) as a safe ingredient for gluten-free products. J Agric Food Chem. 59 (24):12969-74.DOI: 10.1021/jf2041824

Caselato-Sousa VM, Amaya-Farfán J.(2012). State of knowledge on amaranth grain: a comprehensive review. J Food Sci, 77(4), R93-104 . DOI: 10.1111/j.1750-3841.2012.02645.x

Chicco, A.G., D'Alessandro, M.E., Hein, G.J., Oliva, M.E., Lombardo, Y.B. (2009).Dietary chia seed (Salvia hispanica L.) rich in alpha-linolenic acid improves adiposity and normalises hypertriacylglycerolaemia and insulin resistance in dyslipaemic rats. Br J Nutr, 101(1), 41-50.DOI: 10.1017/S000711450899053X

Cooper, D.N., Kable, M.E., Marco, M.L., De Leon, A., Rust, B., Baker, J.E. … Keim, N.L. (2017). The Effects of Moderate Whole Grain Consumption on Fasting Glucose and Lipids, Gastrointestinal Symptoms, and Microbiota.Nutrients, 9(2). DOI: 10.3390/nu9020173

Czerwiński, J., Bartnikowska, E., Leontowicz, H., Lange, E., Leontowicz, M., Katrich, E., ... & Gorinstein, S. (2004). Oat (Avena sativa L.) and amaranth (Amaranthus hypochondriacus) meals positively affect plasma lipid profile in rats fed cholesterol-containing diets. The Journal of nutritional biochemistry, 15(10), 622-629. https://doi.org/10.1016/j.jnutbio.2004.06.002

de Vries, J., Birkett, A., Hulshof, T., Verbeke, K., Gibes, K. (2016). Effects of Cereal, Fruit and Vegetable Fibers on Human Fecal Weight and Transit Time: A Comprehensive Review of Intervention Trials.Nutrients, 8(3), 130. DOI: 10.3390/nu8030130

Filho, A.M., Pirozi, M.R., Borges, J.T., Pinheiro Sant'Ana, H.M., Chaves, J.B., Coimbra, J.S.(2017). Quinoa: Nutritional, functional, and antinutritional aspects. Crit Rev Food Sci Nutr. 57(8), 1618-1630. DOI: 10.1080/10408398.2014.1001811

Gabrial, S.G., Shakib, M.R., Gabrial, G.N.(2016). Effect of Pseudocereal-Based Breakfast Meals on the First and Second Meal Glucose Tolerance in Healthy and Diabetic Subjects. Open Access Maced J Med Sci, 4(4), 565-573 DOI: 10.3889/oamjms.2016.115

Georgoulis, M., Kontogianni, M.D., Tileli, N., Margaritie, A., Fragopoulou, E., Tiniakos, D., Zafiropoulou, R., & Papatheodoridis, G. (2014). The impact of cereal grain consumption on the development and severity of non-alcoholic fatty liver disease. Eur J Nutr, 53(8), 1727-35. DOI: 10.1007/s00394-014-0679-y

Graf, B.L., Rojas-Silva, P., Rojo, L.E., Delatorre-Herrera, J., Baldeón, M.E., Raskin, I. (2015). Innovations in Health Value and Functional Food Development of Quinoa (Chenopodium quinoa Willd.). Compr Rev Food Sci Food Saf, 14(4), 431-445. DOI:10.1111/1541-4337.12135

Kam, J., Puranik, S., Yadav, R., Manwaring, H. R., Pierre, S., Srivastava, R. K., & Yadav, R. S. (2016). Dietary interventions for type 2 diabetes: how millet comes to help. Frontiers in plant science, 7. DOI: 10.3389/fpls.2016.01454

Kranz, S., Dodd, K.W., Juan, W.Y., Johnson, L.K., Jahns, L. (2017). Whole Grains Contribute Only a Small Proportion of Dietary Fiber to the U.S. Diet. Nutrients, 9(2).DOI: 10.3390/nu9020153

Kreiter, T. (2005). SEEDS OF WELLNESS: RETURN OF A SUPERCR/lIN. Saturday Evening Post.

KUMAR, R., BHAYANA, S., & KAPOOR, S. (2015). THE ROLE OF FUNCTIONAL FOODS FOR HEALTHY LIFE: CURRENT PERSPECTIVES. Int J Pharm Bio Sci,6, 429-443. Article

Lambeau, K.V., McRorie, J.W. Jr.(2017). Fiber supplements and clinically proven health benefits: How to recognize and recommend an effective fiber therapy. J Am Assoc Nurse Pract, 29(4), 216-223. DOI: 10.1002/2327-6924.12447

Lamothe, L.M., Srichuwong, S., Reuhs, B.L., Hamaker, B.R. (2015). Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans. Food Chem, 167, 490-6. DOI: 10.1016/j.foodchem.2014.07.022

López, V. R. L., Razzeto, G. S., Giménez, M. S., & Escudero, N. L. (2011). Antioxidant properties of Amaranthus hypochondriacus seeds and their effect on the liver of alcohol-treated rats. Plant foods for human nutrition, 66(2), 157-162. DOI: 10.1007/s11130-011-0218-4

Mohd Ali, N., Yeap, S.K., Ho, W.Y, Beh, B.K., Tan, S.W., Tan, S.G. (2012).The promising future of chia, Salvia hispanica L. J Biomed Biotechnol. 2012, 171956. DOI: 10.1155/2012/171956

Mota, C., Santos, M., Mauro, R., Samman, N., Matos, A.S., Torres, D., Castanheira, I.(2016). Protein content and amino acids profile of pseudocereals. Food Chem193, 55-61.DOI: 10.1016/j.foodchem.2014.11.043

Nascimento, A.C., Mota, C., Coelho, I., Gueifão, S., Santos, M., Matos, A.S. … Castanheira I. (2014). Characterisation of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus), and purple corn (Zea mays L.) consumed in the North of Argentina: proximates, minerals and trace elements. Food Chem, 148, 420-6.DOI: 10.1016/j.foodchem.2013.09.155

Food Science: The Application and Use of Whole Seeds for Dietary Fiber: Quinoa, Amaranth, Buckwheat, Chia, and Millet.*

Dietary Fiber for Regularity

Abdullah, M.M., Gyles, C.L., Marinangeli, C.P., Carlberg, J.G., Jones, P.J. (2015). Dietary fibre intakes and reduction in functional constipation rates among Canadian adults: a cost-of-illness analysis. Food Nutr Res, 59, 28646. Article

Albertson, A.M., Reicks, M., Joshi, N., Gugger, C.K.(2016). Whole grain consumption trends and associations with body weight measures in the United States: results from the cross sectional National Health and Nutrition Examination Survey 2001-2012. Nutr J. 15, 8. DOI: 10.1016/j.jada.2006.06.003

American Dietetic Association (2008). Position of the American Dietetic Association: Health implications of Dietary Fiber. Journal of the American Dietetic Association, 108(10), 1716-1731. https://doi.org/10.1016/j.jada.2008.08.007

Clemens, R., Kranz, S., Mobley, A.R., Nicklas, T.A., Raimondi, M.P., Rodriguez, J.C., … Warshaw, H. (2012). Filling American’s fiber intake gap: Summary of roundtable to probe realistic solutions with a focus on grain-based foods. J Nutr., 142(7), 1390-1401. DOI: 10.3945/jn.112.160176

Cooper, D.N., Kable, M.E., Marco, M.L., De Leon, A., Rust, B., Baker, J.E. … Keim, N.L. (2017). The Effects of Moderate Whole Grain Consumption on Fasting Glucose and Lipids, Gastrointestinal Symptoms, and Microbiota. Nutrients, 9(2). ). DOI:10.3390/nu9020173

Eswaran S., Muir J., & Chey W.D. (2013). Fiber and functional gastrointestinal disorders. Am J Gastroenterol, 108, 718–727. DOI: 10.1038/ajg.2013.63

de Vries, J., Birkett, A., Hulshof, T., Verbeke, K., Gibes, K. (2016). Effects of Cereal, Fruit and Vegetable Fibers on Human Fecal Weight and Transit Time: A Comprehensive Review of Intervention Trials.Nutrients, 8(3), 130. DOI: 10.3390/nu8030130

Holl, R.M. (2014). Bowel movement: the sixth vital sign. Holist Nurs Pract, 28(3), 195-7. DOI: 10.1097/HNP.0000000000000024

King, D.E., Mainous, A.G. 3rd, Lambourne, C.A. (2012). Trends in dietary fiber intake in the United States, 1999-2008. J Acad Nutr Diet, 112(5), 642-8. DOI: 10.1016/j.jand.2012.01.019

Kranz, S., Dodd, K.W., Juan, W.Y., Johnson, L.K., Jahns, L. (2017). Whole Grains Contribute Only a Small Proportion of Dietary Fiber to the U.S. Diet. Nutrients, 9(2).DOI: 10.3390/nu9020153

Kamar, M., Evans, C., Hugh-Jones, S. (2016). Factors influencing adolescent whole grain intake: A theory-based qualitative study. Appetite, 101, 125-33. DOI: 10.1016/j.appet.2012.04.014

Kuznesof, S., Brownlee, I.A., Moore, C., Richardson, D.P., Jebb, S.A., Seal, C.J.(2012). WHOLEheart study participant acceptance of wholegrain foods. Appetite, 59(1), 187-93. DOI: 10.1016/j.appet.2012.04.014

Lambeau, K.V., McRorie, J.W. Jr.(2017). Fiber supplements and clinically proven health benefits: How to recognize and recommend an effective fiber therapy. J Am Assoc Nurse Pract, 29(4), 216-223. DOI: 10.1002/2327-6924.12447

Lee, W.T., Ip, K.S., Chan, J.S., Lui, N.W., & Young, B.W. (2008). Increased prevalence of constipation in pre-school children is attributable to under-consumption of plant foods: a community-based study. J Paediatr Child Health, 44,170–175. DOI: 10.1111/j.1440-1754.2007.01212.x

McCallum, I.J., Ong, S., Mercer-Jones, M.(2009). Chronic constipation in adults. BMJ, 338, b831. DOI: 10.1097/HNP.0000000000000024

McRae, M.P. (2017). Health Benefits of Dietary Whole Grains: An Umbrella Review of Meta-analyses. J Chiropr Med, 16(1), 10-18. DOI: 10.1016/j.jcm.2016.08.008

Mobley, A.R., Jones, J.M., Rodriguez, J., Slavin, J., & Zelman, K.M. (2014). Identifying practical solutions to meet American’s fiber needs: Proceedings from the Food & Fiber Summit. Nutrients, 8(7), 2540-51. DOI: 10.3390/nu6072540

Morais, M.B., Vítolo, M.R., Aguirre, A.N., & Fagundes-Neto, U. (1999). Measurement of low dietary fiber intake as a risk factor for chronic constipation in children. J Pediatr Gastroenterol Nutr, 29, 132–135. Abstract

Neo, J.E., Brownlee, I.A.(2017). Wholegrain Food Acceptance in Young Singaporean Adults. Nutrients, 9(4). DOI: 10.3390/nu9040371

Radford, A., Langkamp-Henken, B., Hughes, C., Christman, M.C., Jonnalagadda, S., Boileau, T.W., Thielecke, F., Dahl, W.J.(2014). Whole-grain intake in middle school students achieves dietary guidelines for Americans and MyPlate recommendations when provided as commercially available foods: a randomized trial. J Acad Nutr Diet, 114 (9),1417-23.DOI: 10.1016/j.jand.2014.04.020

Sanjoaquin, M. A., Appleby, P. N., Spencer, E. A., & Key, T. J. (2004). Nutrition and lifestyle in relation to bowel movement frequency: a cross-sectional study of 20 630 men and women in EPIC–Oxford. Public health nutrition, 7(1), 77-83. DOI: https://doi.org/10.1079/PHN2003522

Schmier, J.K., Miller, P.E., Levine, J.A., Perez, V., Maki, K.C., Rains, T.M., … Alexander, D.D. (2014). Cost savings reduced constipation rates attributed to increased dietary fiber intakes: A decision-analytic model. BMC Public Health, 14-374. DOI: 10.1186/1471-2458-14-374

Seal, C.J., Brownlee, I.A.(2015). Whole-grain foods and chronic disease: evidence from epidemiological and intervention studies. Proc Nutr Soc, 74(3), 313-9. DOI: 10.1017/S0029665115002104

Williams, C.L. (1995). Importance of dietary fiber in childhood. J Am Diet Assoc, 95, 1140–1146. DOI: 10.1016/S0002-8223(95)00307-X

Dietary Fiber for Heart, Fatty Liver, and Diabetes Support

Abdullah, M.M., Gyles, C.L., Marinangeli, C.P., Carlberg, J.G., Jones, P.J. (2015). Cost-of-illness analysis reveals potential healthcare savings with reductions in type 2 diabetes and cardiovascular disease following recommended intakes of dietary fiber in Canada. Front Pharmacol, 6, 167. DOI: 10.1186/1471-2458-14-374

Baron, R.B. (2013). Eat more fiber. doi: https://doi.org/10.1136/bmj.f7401

Bing, F.C. (1976). Dietary fiber—in historical perspective.J Am Diet Assoc, 69(5), 498-505. Abstract

Georgoulis, M., Kontogianni, M.D., Tileli, N., Margaritie, A., Fragopoulou, E., Tiniakos, D., Zafiropoulou, R., & Papatheodoridis, G. (2014). The impact of cereal grain consumption on the development and severity of non-alcoholic fatty liver disease. Eur J Nutr, 53(8), 1727-35. DOI: 10.1007/s00394-014-0679-y

Grooms, K. N., Ommerborn, M. J., Pham, D. Q., Djoussé, L., & Clark, C. R. (2013). Dietary fiber intake and cardiometabolic risks among US adults, NHANES 1999-2010. The American journal of medicine, 126 (12), 1059-1067. DOI: 10.1016/j.amjmed.2013.07.023

Lappi, J., Kolehmainen, M. Mykkanen, H., & Poutanen, K. (2013). Do large intestinal events explain the protective effects of whole grain foods against type 2 diabetes? Crit Rev Food Sci Nutri, 53(6), 631-40. DOI: 10.1080/10408398.2010.550388

Li, S., Flint, A., Pai, J.K., Forman, J.P., Hu, F.B, Willett, W.C…. Rimm, E.B. (2014). Dietary ifber intake and mortality among survivors of myocardial infarction: prospective cohort study. BMJ. doi: https://doi.org/10.1136/bmj.g2659

Ross, A.B., Godin, J.P., Minehira, K., & Kirwan, J.P. (2013). Increasing whole grain intake as part of prevention and treatment of nonalcoholic fatty liver disease. Int j Endocrinol. DOI: 10.1155/2013/585876

Satija, A., & Hu, F.B. (2012). Cardiovascular benefits of dietary fiber. Curr Atheroscler Rep, 14(6), 505-14. DOI: 10.1007/s11883-012-0275-7

Streppel, M.T., Ocke, M.C., Boshuizen, H.C., Kok, F.J., & Kromhout, D. (2008). Dietary fiber intake in relation to coronary heart disease and all-cause mortality over 40 y: the Zutphen Study. Am J Clin Nutr, 88, 1119-25. Article

Threapleton, D.E., Greenwood, D.C., Evans, C.E.L., Cleghorn, C.L., Nykjaer, C., woodhead, C…. Burley, V.J. (2013). Dietary fibre intake and risk of cardiovascular disease: Systematic review and meta-analysis. doi: https://doi.org/10.1136/bmj.f6879 .

Trowell, H. (1976). Definition of dietary fiber and hypotheses that it is protective factor in certain diseases. Am J Clin Nutri, 29(4), 417-27. Abstract

van Gijssel, R.M., Braun, K.V., Kiefte-de Jong, J.C., Jaddoe, V.W., Franco, O.H., Voortman, T.(2016). Associations between Dietary Fiber Intake in Infancy and Cardiometabolic Health at School Age: The Generation R Study. Nutrients. 8(9). DOI: 10.3390/nu8090531

Ye, E.Q., Chacko, S.A., Chou, E.L., Kugizaki, M., & Liu, S. (2012). Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain. J Nutr, 147(7), 1304-13. DOI: 10.3945/jn.111.155325

Quinoa (Chenopodium quinoa) Whole Seed

Abderrahim, F., Huanatico, E., Segura, R., Arribas, S., Gonzalez, M. C., & Condezo-Hoyos, L. (2015). Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano. Food chemistry, 183, 83-90.

Abugoch James, L.E. (2009). Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Adv Food Nutr Res, 58, 1-31.DOI: 10.1016/S1043-4526(09)58001-1

Alvarez-Jubete, L., Arendt, E.K., Gallagher, E.(2009). Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. Int J Food Sci Nutr, 60 Suppl 4, 240-57.DOI: 10.1080/09637480902950597

Filho, A.M., Pirozi, M.R., Borges, J.T., Pinheiro Sant'Ana, H.M., Chaves, J.B., Coimbra, J.S.(2017). Quinoa: Nutritional, functional, and antinutritional aspects. Crit Rev Food Sci Nutr. 57(8), 1618-1630. DOI: 10.1080/10408398.2014.1001811

Gabrial, S.G., Shakib, M.R., Gabrial, G.N.(2016). Effect of Pseudocereal-Based Breakfast Meals on the First and Second Meal Glucose Tolerance in Healthy and Diabetic Subjects. Open Access Maced J Med Sci, 4(4), 565-573 DOI: 10.3889/oamjms.2016.115

Graf, B.L., Rojas-Silva, P., Rojo, L.E., Delatorre-Herrera, J., Baldeón, M.E., Raskin, I. (2015). Innovations in Health Value and Functional Food Development of Quinoa (Chenopodium quinoa Willd.). Compr Rev Food Sci Food Saf, 14(4), 431-445. DOI:10.1111/1541-4337.12135

Kozioł, M. J. (1992). Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). Journal of Food Composition and Analysis, 5(1), 35-68. Abstract

Nowak, V., Du, J., Charrondière, U.R.(2016). Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem, 193, 47-54. DOI: 10.1016/j.foodchem.2015.02.111

Nsimba, R. Y., Kikuzaki, H., & Konishi, Y. (2008). Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food chemistry, 106(2), 760-766. https://doi.org/10.1016/j.foodchem.2007.06.004

Ogungbenle HN.(2003). Nutritional evaluation and functional properties of quinoa (Chenopodium quinoa) flour. Int J Food Sci Nutr, 54(2), 153-8.DOI: 10.1080/0963748031000084106

Simnadis, T. G., Tapsell, L. C., & Beck, E. J. (2015). Physiological effects associated with Quinoa consumption and implications for research involving humans: a review. Plant foods for human nutrition, 70(3), 238-249. DOI: 10.1007/s11130-015-0506-5

Tang, Y., Zhang, B., Li, X., Chen, P. X., Zhang, H., Liu, R., & Tsao, R. (2016). Bound phenolics of quinoa seeds released by acid, alkaline, and enzymatic treatments and their antioxidant and α-glucosidase and pancreatic lipase inhibitory effects. Journal of agricultural and food chemistry, 64(8), 1712-1719. DOI: 10.1021/acs.jafc.5b05761

Tang, Y., Li, X., Zhang, B., Chen, P. X., Liu, R., & Tsao, R. (2015). Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry, 166, 380-388. DOI: 10.1016/j.foodchem.2014.06.018

Vega-Gálvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., Martínez, E.A.(2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review.J Sci Food Agric, 90(15), 2541-7.DOI: 10.1002/jsfa.4158

Zhu, N., Sheng, S., Li, D., LaVoie, E. J., Karwe, M. V., Rosen, R. T., & HO, C. T. (2001). Antioxidative flavonoid glycosides from quinoa seeds (Chenopodium quinoa Willd). Journal of Food Lipids, 8(1), 37-44. Abstract

Amaranth (Amaranthus hypochondriacus) Whole Seed

Ballabio, C., Uberti, F., Di Lorenzo, C., Brandolini, A., Penas, E., Restani, P.(2011). Biochemical and immunochemical characterization of different varieties of amaranth (Amaranthus L. ssp.) as a safe ingredient for gluten-free products. J Agric Food Chem. 59 (24):12969-74.DOI: 10.1021/jf2041824

Caselato-Sousa VM, Amaya-Farfán J.(2012). State of knowledge on amaranth grain: a comprehensive review. J Food Sci, 77(4), R93-104 . DOI: 10.1111/j.1750-3841.2012.02645.x

Czerwiński, J., Bartnikowska, E., Leontowicz, H., Lange, E., Leontowicz, M., Katrich, E., ... & Gorinstein, S. (2004). Oat (Avena sativa L.) and amaranth (Amaranthus hypochondriacus) meals positively affect plasma lipid profile in rats fed cholesterol-containing diets. The Journal of nutritional biochemistry, 15(10), 622-629. https://doi.org/10.1016/j.jnutbio.2004.06.002

de la Rosa, A. B., Fomsgaard, I. S., Laursen, B., Mortensen, A. G., Olvera-Martínez, L., Silva-Sánchez, C., ... & De León-Rodríguez, A. (2009). Amaranth (Amaranthus hypochondriacus) as an alternative crop for sustainable food production: Phenolic acids and flavonoids with potential impact on its nutraceutical quality. Journal of Cereal Science, 49(1), 117-121. https://doi.org/10.1016/j.jcs.2008.07.012

Lamothe, L.M., Srichuwong, S., Reuhs, B.L., Hamaker, B.R. (2015). Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans. Food Chem, 167, 490-6. DOI: 10.1016/j.foodchem.2014.07.022

López, V. R. L., Razzeto, G. S., Giménez, M. S., & Escudero, N. L. (2011). Antioxidant properties of Amaranthus hypochondriacus seeds and their effect on the liver of alcohol-treated rats. Plant foods for human nutrition, 66(2), 157-162. DOI: 10.1007/s11130-011-0218-4

Maldonado-Cervantes, E., Jeong, H. J., León-Galván, F., Barrera-Pacheco, A., De León-Rodríguez, A., de Mejia, E. G., ... & de la Rosa, A. P. B. (2010). Amaranth lunasin-like peptide internalizes into the cell nucleus and inhibits chemical carcinogen-induced transformation of NIH-3T3 cells. Peptides, 31(9), 1635-1642. DOI: 10.1016/j.peptides.2010.06.014

Mota, C., Santos, M., Mauro, R., Samman, N., Matos, A.S., Torres, D., Castanheira, I.(2016). Protein content and amino acids profile of pseudocereals. Food Chem193, 55-61.DOI: 10.1016/j.foodchem.2014.07.022

Nascimento, A.C., Mota, C., Coelho, I., Gueifão, S., Santos, M., Matos, A.S. … Castanheira I. (2014). Characterisation of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus), and purple corn (Zea mays L.) consumed in the North of Argentina: proximates, minerals and trace elements. Food Chem, 148, 420-6.DOI: 10.1016/j.foodchem.2013.09.155

Pavlik, V. (2012).The revival of Amaranth as a third-millennium food. Neuro Endocrinol Lett, 33 Suppl 3:3-7. Abstract

Rastogi, A., Shukla, S.(2013). Amaranth: a new millennium crop of nutraceutical values. Crit Rev Food Sci Nutr, 53(2), 109-25. DOI: 10.1080/10408398.2010.517876

Silva-Sánchez, C., De La Rosa, A. B., León-Galván, M. F., De Lumen, B. O., de León-Rodríguez, A., & de Mejía, E. G. (2008). Bioactive peptides in amaranth (Amaranthus hypochondriacus) seed. Journal of agricultural and food chemistry, 56(4), 1233-1240. DOI: 10.1021/jf072911z

Soares, R. A. M., Mendonça, S., de Castro, L. Í. A., Menezes, A. C. C. C. C., & Arêas, J. A. G. (2015). Major peptides from amaranth (Amaranthus cruentus) protein inhibit HMG-CoA reductase activity. International journal of molecular sciences, 16(2), 4150-4160. DOI: 10.3390/ijms16024150

Tang, Y., Tsao, R.(2017). Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: a review. Mol Nutr Food Res, 61(7). DOI: 10.1002/mnfr.201600767

Tyszka-Czochara, M., Pasko, P., Zagrodzki, P., Gajdzik, E., Wietecha-Posluszny, R., Gorinstein, S. (2016). Selenium Supplementation of Amaranth Sprouts Influences Betacyanin Content and Improves Anti-Inflammatory Properties via NFκB in Murine RAW 264.7 Macrophages. Biol Trace Elem Res, 169(2), 320-30. DOI: 10.1007/s12011-015-0429-x

Velarde-Salcedo, A. J., Barrera-Pacheco, A., Lara-González, S., Montero-Morán, G. M., Díaz-Gois, A., de Mejia, E. G., & de la Rosa, A. P. B. (2013). In vitro inhibition of dipeptidyl peptidase IV by peptides derived from the hydrolysis of amaranth (Amaranthus hypochondriacus L.) proteins. Food chemistry, 136(2), 758-764. DOI: 10.1016/j.foodchem.2012.08.032

Buckwheat ( Fagopyrum esculentum) Whole Seed

Bai, C.Z., Feng, M.L., Hao, X.L., Zhong, Q.M., Tong, L.G., Wang, Z.H. (2015). Rutin, quercetin, and free amino acid analysis in buckwheat (Fagopyrum) seeds from different locations. Genet Mol Res, 14(4), 19040-8. DOI: 10.4238/2015.December.29.11

Giménez-Bastida, J.A., Zieliński, H. (2015). Buckwheat as a Functional Food and Its Effects on Health. J Agric Food Chem, 63(36):7896-913. DOI: 10.1021/acs.jafc.5b02498

Kreft, I., Fabjan, N., & Yasumoto, K. (2006). Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chemistry, 98(3), 508-512. https://doi.org/10.1016/j.foodchem.2005.05.081

Jiang, P., Burczynski, F., Campbell, C., Pierce, G., Austria, J. A., & Briggs, C. J. (2007). Rutin and flavonoid contents in three buckwheat species Fagopyrum esculentum, F. tataricum, and F. homotropicum and their protective effects against lipid peroxidation. Food Research International, 40(3), 356-364. https://doi.org/10.1016/j.foodres.2006.10.009

KUMAR, R., BHAYANA, S., & KAPOOR, S. (2015). THE ROLE OF FUNCTIONAL FOODS FOR HEALTHY LIFE: CURRENT PERSPECTIVES. Int J Pharm Bio Sci,6, 429-443. Article

Li, S.Q., Zhang, Q.H.(2001). Advances in the development of functional foods from buckwheat. Crit Rev Food Sci Nutr, 41(6), 451-64. DOI: 10.1080/20014091091887

Quettier-Deleu, C., Gressier, B., Vasseur, J., Dine, T., Brunet, C., Luyckx, M., ... & Trotin, F. (2000). Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of ethnopharmacology, 72(1), 35-42. https://doi.org/10.1016/S0378-8741(00)00196-3

Watanabe, M. (1998). Catechins as antioxidants from buckwheat (Fagopyrum esculentum Moench) groats. Journal of Agricultural and Food Chemistry, 46(3), 839-845. DOI:10.1021/jf9707546

Zhu, F. (2016).Chemical composition and health effects of Tartary buckwheat. Food Chem, 203, 231-45. DOI: 10.1016/j.foodchem.2016.02.050

Žvikas, V., Pukelevičienė, V., Ivanauskas, L., Pukalskas, A., Ražukas, A., Jakštas, V. (2016). Variety-based research on the phenolic content in the aerial parts of organically and conventionally grown buckwheat. Food Chem, 13, 660-7. DOI: https://doi.org/10.1016/j.foodchem.2016.07.010

Chia (Salvia hispanica L.) Whole seed

Chicco, A.G., D'Alessandro, M.E., Hein, G.J., Oliva, M.E., Lombardo, Y.B. (2009).Dietary chia seed (Salvia hispanica L.) rich in alpha-linolenic acid improves adiposity and normalises hypertriacylglycerolaemia and insulin resistance in dyslipaemic rats. Br J Nutr, 101(1), 41-50.DOI: 10.1017/S000711450899053X

da Silva, B.P., Dias, D.M., de Castro Moreira, M.E., Toledo, R.C., da Matta, S.L. … Pinheiro-Sant'Ana, H.M.(2016). Chia Seed Shows Good Protein Quality, Hypoglycemic Effect and Improves the Lipid Profile and Liver and Intestinal Morphology of Wistar Rats. Plant Foods Hum Nutr. 71(3), 225-30.DOI: 10.1007/s11130-016-0543-8

Marchinek, K. Kreipcio, Z. (2017). Chia seeds (Salvia hispanica): health promoting properties and therapeutic applications – a review.Rocz Panstw Zaki Hig, 68, (2), 123-29. Abstract

Mohd Ali, N., Yeap, S.K., Ho, W.Y, Beh, B.K., Tan, S.W., Tan, S.G. (2012).The promising future of chia, Salvia hispanica L.J Biomed Biotechnol. 2012, 171956. DOI: 10.1155/2012/171956

Poudyal, H., Panchal, S.K, Waanders, J., Ward, L., Brown, L. (2012). Lipid redistribution by α-linolenic acid-rich chia seed inhibits stearoyl-CoA desaturase-1 and induces cardiac and hepatic protection in diet-induced obese rats. J Nutr Biochem, 23(2), 153-62. DOI: 10.1016/j.jnutbio.2010.11.011

Rossi, A. S., Oliva, M. E., Ferreira, M. R., Chicco, A., & Lombardo, Y. B. (2013). Dietary chia seed induced changes in hepatic transcription factors and their target lipogenic and oxidative enzyme activities in dyslipidaemic insulin-resistant rats. British Journal of Nutrition , 109(9), 1617-1627. DOI: 10.1017/S0007114512003558

Ullah, R., Nadeem, M., Khalique, A., Imran, M., Mehmood, S., Javid, A., Hussain. J. (2016).Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): a review. J Food Sci Technol, 53(4), 1750-8.DOI: 10.1007/s13197-015-1967-0

Valdivia-López, M.Á., Tecante, A. (2015). Chia (Salvia hispanica): A Review of Native Mexican Seed and its Nutritional and Functional Properties. Adv Food Nutr Res, 75, 53-75. DOI: 10.1016/bs.afnr.2015.06.002

Millet (Panicum Miliaceum) Whole Seed/Grain

Amadou, I., Gounga, M. E., & Le, G. W. (2013). Millets: Nutritional composition, some health benefits and processing-A review. Emirates Journal of Food and Agriculture, 25(7), 501. ProQuest

Chandrasekara, A., Shahidi, F. (2012). Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation. J Funct Foods 4, 22637 . https://doi.org/10.1016/j.jff.2011.11.001

Chandrasekara, A., & Shahidi, F. (2011). Antiproliferative potential and DNA scission inhibitory activity of phenolics from whole millet grains. Journal of Functional Foods, 3(3), 159-170. https://doi.org/10.1016/j.jff.2011.03.008

Chandrasekara, A., & Shahidi, F. (2010). Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity. Journal of agricultural and food chemistry, 58(11), 6706-6714. DOI: 10.1021/jf100868b

Geervani, P., & Eggum, B. O. (1989). Nutrient composition and protein quality of minor millets.Plant Foods for Human Nutrition (Formerly Qualitas Plantarum),39(2), 201-208. Abstract

Gupta, S., Shrivastava, S. K., & Shrivastava, M. (2014). Proximate composition of seeds of hybrid varieties of minor millets. Int. J. Res. Eng. Technol, 3, 687-693. Article

Habiyaremye, C., Matanguihan, J. B., Guedes, J. D. A., Ganjyal, G. M., Whiteman, M. R., Kidwell, K. K., & Murphy, K. M. (2016). Proso Millet (Panicum miliaceum L.) and Its Potential for Cultivation in the Pacific Northwest, US: A Review. Frontiers in plant science, 7. DOI: 10.3389/fpls.2016.01961

Kalinova, J., & Moudry, J. (2006). Content and quality of protein in proso millet (Panicum miliaceum L.) varieties. Plant Foods for Human Nutrition, 61(1), 43. DOI: 10.1007/s11130-006-0013-9

Kam, J., Puranik, S., Yadav, R., Manwaring, H. R., Pierre, S., Srivastava, R. K., & Yadav, R. S. (2016). Dietary interventions for type 2 diabetes: how millet comes to help. Frontiers in plant science, 7. DOI: 10.3389/fpls.2016.01454

Lu, H., Zhang, J., Liu, K. B., Wu, N., Li, Y., Zhou, K., ... & Shen, L. (2009). Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proceedings of the National Academy of Sciences, 106(18), 7367-7372. Abstract

Nishizawa, N., Sato, D., Ito, Y., Nagasawa, T., Hatakeyama, Y., Choi, M. R., ... & Wei, Y. M. (2002). Effects of dietary protein of proso millet on liver injury induced by D-galactosamine in rats. Bioscience, biotechnology, and biochemistry, 66(1), 92-96. http://dx.doi.org/10.1271/bbb.66.92

Park, K. O., Ito, Y., Nagasawa, T., Choi, M. R., & Nishizawa, N. (2008). Effects of dietary Korean proso-millet protein on plasma adiponectin, HDL cholesterol, insulin levels, and gene expression in obese type 2 diabetic mice. Bioscience, biotechnology, and biochemistry,72(11), 2918-2925. Abstract

Pathak H. C. (2013). Role of Millets in Nutritional Security of India. New Delhi: National Academy of Agricultural Sciences, 1–16. Policy Paper 66 : Role of millets in Nutritional Security of India NAAS

Sreeremya, S. (2017). Nutritional Aspects of Chiya Seeds. International journal of advance research and development, 2(2). Nutritional Aspects of Chiya Seeds

Shahidi, F., & Chandrasekara, A. (2013). Millet grain phenolics and their role in disease risk reduction and health promotion: A review. Journal of Functional Foods, 5(2), 570-581. https://doi.org/10.1016/j.jff.2013.02.004

Saleh, A. S., Zhang, Q., Chen, J., & Shen, Q. (2013). Millet grains: nutritional quality, processing, and potential health benefits. Comprehensive Reviews in Food Science and Food Safety, 12 (3), 281-295. Article

Zhang, L., Liu, R., & Niu, W. (2014). Phytochemical and antiproliferative activity of proso millet. PloS one, 9 (8), e104058. https://doi.org/10.1371/journal.pone.0104058

Dietary Fiber: Energy and Weight Loss Support

Giacco, R., Della Pepa, G., Luongo, D., & Riccardi G. (2011). Whole grain intake in relation to body weight: from epidemiological evidence to clinical trails. Nutr Metab Cardiovasc Dis, 21(12), 901-8. DOI: 10.1016/j.numecd.2011.07.003

Karl, J.P., Meydani, M., Barnett, J.B., Vanegas, S.M., Goldin, B., Kane, A. … Roberts, S.B. (2017). Substituting whole grains for refined grains in a 6-wk randomized trial favorably affects energy-balance metrics in healthy men and postmenopausal women. Am J Clin Nutr, 105(3), 589-599. DOI: 10.3945/ajcn.116.139683

Karl, J.P., Saltzman E. (2012). The role of whole grains in body weight regulation. Adv Nutr, 3(5), 697-707. DOI: 10.3945/an.112.002782

Ma, X., Tang, W.G., Yang, Y., Zhang, Q.L., Zheng, J.L., Xiang, Y.B. (2016). Association between whole grain intake and all-cause mortality: a meta-analysis of cohort studies. Oncotarget, 7(38), 61996-62005.DOI: 10.18632/oncotarget.11491

Dietary Fiber and the Microbiome

Martinez, I., Lattimer, J.M., Hubach, K.L., Case, J.A., Yang, J., Weber, C.G….Walter, J. (2013). Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 7(2), 269-80. DOI: 10.1038/ismej.2012.104

Sonnenburg, E.D., Sonnenburg, J.L. (2014). Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab, 20(5), 779-86. doi: 10.1016/j.cmet.2014.07.003. DOI: 10.1016/j.cmet.2014.07.003

Speliotes, E. K., Willer, C. J., Berndt, S. I., Monda, K. L., Thorleifsson, G., Jackson, A. U., ... & Randall, J. C. (2010). Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index.Nat Genet, 42(11), 937-48. DOI: 10.1038/ng.686

Walter, J., Martinez, I, Rose, D.J. (2013). Holobiont nutrition: considering the role of the gastrointestinal microbiota in the health benefits of whole grains. Gut Microbes, 4(4), 340-6. DOI: 10.4161/gmic.24707

Dietary Fiber, Prebiotic and Cancer Support

O'Keefe, S. J., Ou, J., Aufreiter, S., O'Connor, D., Sharma, S., Sepulveda, J., ... & Mawhinney, T. (2009). Products of the colonic microbiota mediate the effects of diet on colon cancer risk.The Journal of nutrition, 139(11), 2044-2048. DOI: 10.3945/jn.109.104380

O'keefe, S. J., Chung, D., Mahmoud, N., Sepulveda, A. R., Manafe, M., Arch, J., ... & van der Merwe, T. (2007). Why do African Americans get more colon cancer than Native Africans?. The Journal of nutrition,137(1), 175S-182S. Abstract

Roberfroid, M., Gibson, G. R., Hoyles, L., McCartney, A. L., Rastall, R., Rowland, I., ... & Guarner, F. (2010). Prebiotic effects: metabolic and health benefits. British Journal of Nutrition, 104(S2), S1-S63. Abstract

Dietary Fiber and Diverticulosis Support

Crowe, F.L., Appleby, P.N., Allen, N.E., & Key T.J. (2011). Diet and risk of diverticular disease in Oxford cohort of European Prospective Investigation into Cancer and Nutrition (EPIC): prospective study of British vegetarians and non-vegetarians. BMJ, 343:d4131. doi: 10.1136/bmj.d4131

Strate, L.L., Keeley, B.R., Cao, Y., Wu, K., Giovannucci, E.L., & Chan, A.T. (2017). Western Dietary Pattern Increases, and Prudent Dietary Pattern Decreases, Risk of Incident Diverticulitis in a Prospective Cohort Study. Gastroenterology, 152(5), 1023-30. DOI: 10.1053/j.gastro.2016.12.038

† Dietary Fibers are found in whole seeds such as Quinoa, Amaranth, Buckwheat, Chia, and Millet (which some consider as whole grain). Dietary fiber are also found in whole grains such as Oats in the Beta Glucan Synbiotic, as well as in vegetables and roots, such as Inulin from Chicory Root (Original Synbiotic, Beta Glucan Synbiotic, and No 7 Systemic Booster), and red beetroot, (see Beta Glucan Synbiotic).

One 30 Scoop Contains: 
Calories 107g
Water 2.4g 
Protein 4.59g 
Carbohydrates 21.1g 
Fat (Total) 1.52g
Ash 0.43g
Sugars 0.31g
Other Carbohydrates 13.1g 
Dietary Fiber 7.66g
Saturated Fat 0.14g 
Monounsaturated Fat 0.11g 
Polyunsaturated Fat 0.34g 
Thiamin B1 0.05mg 
Riboflavin B2 0.05mg 
Niacin B3 0.61mg 
Niacin Equiv. 1.02mg 
Vitamin B6 0.02mg 
Folate 4.16mg 
Pantothenic Acid 0.08mg 
Vitamin C 0.39mg 
Vitamin E Alpha 0.07mg 
Calcium 20.8mg 
Copper 0.057mg 
Iron 1.69mg 
Magnesium 19.43mg 
Manganese 0.17mg 
Phosphorus 94.72mg 
Potassium 80.15mg 
Sodium 4.14mg 
Zinc 0.25mg 
Amino Acids 4,419 mg (per 36g) 
  Aspartic Acid 315mg 
  Threonine 139mg 
  Serine 211mg 
  Glutamic Acid 744mg 
  Proline 173mg 
  Glycine 200mg 
  Alanine 219mg 
  Valine 152mg 
  Isoleucine 140mg 
  Leucine 288mg 
  Tyrosine 135mg 
  Phenylalanine 173mg 
  Lysine 164mg 
  Histidine 86mg 
  Arginine 321mg 
  Cystine 77mg 
  Methionine 54mg 
  Tryptophan 53mg

Staff of Life — Staff of Life is a nutritional powerhouse of organic indigenous seeds designed to nourish your body deeply, encourage a daily bowel movement, increase energy and endurance during exercise, and in research shows a host of health benefits.*

Daily regularity:  Take 1-2 tablespoons, mix in diluted juice.  Add to cereals, or other baked goods. For a chronic state of constipation, add the Beta Glucan, flax seeds, berries, and greens. Take 1 teaspoon of the No 7 in the evenings.*

Vegans: As a meal replacement, Staff of Life offers a deep nutritional value. Excellent as a drink to increase vitality.

Sports: mix in water or diluted juice twenty minutes before exercise for more energy and endurance.*

Our favorite: Our morning smoothie with Staff of Life and Beta Glucan, along with berries, fruits, and greens, flax seeds and diluted juice is meant to bring in more fiber, probiotics, and nutrients to the whole microbiome system.*

Description

Daily fiber intake is shown in research as one of the most important health requirements. However, optimum levels are rarely achieved, most Americans only consume about 15 g of fiber instead of the recommended 25 g of fiber for adult women and 38 g fiber for adult men (American Dietetic Association, 2008; Kranz et al., 2017). Eating enough fiber is important to our physical health but also our financial health. A Canadian research team discovered that eating enough dietary fiber enhances health and reduces costs for health care (Abdula et al., 2015). This conclusion aligned with the research of Schmier et al. in 2014. The position of the American Dietetic is based on epidemiologic studies showing fiber offers protection against several chronic diseases such as cardiovascular, including blood pressure, lipid levels, and inflammation (p. 1719-20; Gabrial et al., 2016; Cooper et al., 2017). Data also show a correlating relationship between dietary fiber and cancer with studies supporting the theory that dietary fibers offer protection against cancer (ADA, 2008, p. 1723).*

Staff of Life is a global blend of powerful nutrients and dietary fiber that is comprised of indigenous organic whole seeds: Amaranth, Quinoa, Buckwheat, Chia and Millet (which some think of as also a grain). The Aztec people developed amaranth; the Incas raised Quinoa, while buckwheat was native in Asia, parts of Europe and the USA. Chia is a revered seed that is native to central and southern Mexico and Guatemala. Millets are a group of indigenous small-seeded grasses, especially known in Africa and Asia but are cultivated and enjoyed all over the world.

These ancient seeds have been with us for thousands of years. The Staff of Life's five seeds are grown organically in the USA, and through a patented high pressure, heat-shearing process, the soluble fiber and nutrients of the five seeds are released to offer an ideal amount of plant-based protein, complex carbohydrates with low glycemic index, gentle dietary fiber, vitamins and minerals, polyphenols, and so much more. All easily digested.

Adding a tablespoon or two of Staff of Life to your morning shakes, cereals, baked goods, and even soups, adds dietary fiber and nutrients that contribute positively to a host of health benefits such as: cardiovascular health, reduction of fatty liver (van Gijssel et al., 2016; Georgoulis et al., 2014; Grooms et al., 2013, respectively), lasting energy, weight management (de Vries et al., 2016; Albertson et al., 2016; Lambeau et al., 2017), daily regular bowel movements (American Dietetic Association, 2008; Seal & Brownlee, 2015), the list of benefits is long.*

Quinoa (Chenopodium quinoa) was revered as sacred by the Incas, and rightly so as it is considered to be a super food. The quinoa plant was cultivated along the Andes for the last 7000 in challenging environments developing into highly nutrient seed (Vega-Gálvez et al., 2010). Uniquely balanced in all nine essential amino acids needed for tissue development in humans, it is one of the best plant sources of proteins, with protein content of 15%, dietary fiber, vitamins, minerals, vitamin e, and omega oils (Abugoch, 2009; Graf et al., 2015; Nowak et al., 2016). Quinoa is higher in calcium, phosphorus, magnesium, potassium, iron, copper, manganese, and zinc than wheat, barley, or corn. Quinoa is one of nature's most complete foods. It's glycemic load is 18. Since Quinoa is gluten free, it is a healthy dietary fiber for those who suffer celiac disease (Filho et al., 2017; Alvarez-Jubete et al., 2009). Because of its low glycemic index, quinoa and buckwheat offer an important nutritious food and dietary fiber to improve insulin resistance and offer glycemic control for type 2-diabetes (Gabrial et al., 2016). Quinoa and amaranth are also shown to have high amounts of antioxidant activity, phenolic and flavonoids power, and hence believed to offer anti-inflammatory and antioxidant potential (Nsima et al., 2008; Tang et al., 2016, 2015).*

Amaranth (Amaranthus hypochondriacus) was used by the Aztecs both for food and in their religious ceremonies. It has 12% protein and is high in lycine and methionine (amino acids), fiber (three times the fiber of wheat), iron (five times that of wheat), K, P and Ca (two times more than milk), Vitamin A and C. It is 90% digestible. Amaranth's glycemic load is 21 (Mota et al., 2016; Nascimento et al., 2014). Amaranth is shown to have high dietary fiber for daily regularity (Lamothe et al., 2015), and is an excellent fiber for celiac disease (Ballabio et al., 2011). Amaranth confers many other health benefits, including decreasing plasma cholesterol levels and stimulating the immune system (Caselato-Sousa et al., 2015; Soares et al., 2015; Czerwiński et al., 2004), and antioxidants and phenols to protect and support the liver (López et al., 2011). Amaranth is also found in research to contain phytochemical compounds as rutin, nicotiflorin, and peptides that offer antihypertensive and anticarcinogenic activities (Maldonado-Cervantes et al., 2010; Silva-Sánchez et al., 2008).*

Buckwheat ( Fagopyrum esculentum) is over 8000 years old as a human staple. The Yi people of China consume a diet high in Buckwheat. When researchers tested blood lipids of 805 Yi Chinese, they found that buckwheat intake was associated with lower total serum cholesterol, lower LDL, and high HDL (Kumar et al., 2015). Buckwheat is an excellent source of lysine, threonine, tryptophan and sulfur amino acids. Buckwheat's glycemic load is 44, with high content of flavonoid (Quettier-Deleu et al., 2001), high rutin content in the bran (Gabrial et al., 2016; Bai et al., 2015, respectively), and even higher antioxidant activity of catechins (Watanabe, 1998). The buckwheat amino acid composition is contributed to its cholesterol lowering power, antihypertension effects, and dietary fiber for regularly (Li, 2001).*

Chia (Salvia hispanica L.) is a magical whole seed. It's use as energy, life sustaining food dates back 5, 500 years. It is 20% protein, 25% dietary fiber, has an unusually high level of omega-3 and omega-6, vitamins, minerals and high source of antioxidants (Marchinek & Kreipcio, 2017; Chicco et al., 2009; Ulah et al., 2016). Aztec warriors subsisted primarily on Chia. It is called the running food: Native Americans running from the Colorado to the California coast to trade turquoise for seas shells would only bring Chia seeds for their nourishment (Sreeremya, 2017; Kreiter, 2005). Chia's glycemic load is 1. Chia is shown in research to have good protein quality, improves lipid profiles and supports the liver (da Silva et al., 2016; Jin et al., 2012; Mohd Ali et al., 2012). The ancient seed of Chia is a great source of dietary fiber, a benefit for the whole digestive system (Ullah et al., 2016).*

Millet (Panicum Miliaceum) is an ancient seed that is over 10,000 old, a major source of food for energy (Habiyaremye et al., 2016; Saleh et al., 2013). A non-acid forming food, millet is easy to digest and considered to be one of the least allergenic seeds (Gupta et al., 2014). Proso Millet (panicum Miliaceum) contains significant amounts of amino acids, especially methionine and cysteine, demonstrating a protein quality of 51% higher than wheat. Millet is also found to contain dietary fiber, B Complex, vitamins (including niacin, thiamin, folic acid and riboflavin), minerals (Ca, Fe, K, Mg, Zn, P), and a significant amount of amino acids (especially methionine and cysteine), and lecithin (Amadou & Gounga, 2013; Gupta et al., 2014). Millet confers many health benefits due to its high nutrients quality and phytochemical profile (Pathak, 2013), including prevention of cancer (Zhang et al., 2014; Shahidi & Chandrasekara, 2013; Chandrasekara & Shahidi, 2011), diabetes (Kam et al., 2016), liver support (Nishizawa et al., 2002), and protection against degenerative diseases (Pathak, 2013). Millet is a staple food of the Hunzas, a society renowned for robust longevity. Millet's glycemic load is 21.*

Staff of Life can be mixed with Beta Glucan for the added benefit of oat beta glucan (99.98% gluten free) and red beet root for added dietary fiber and probiotics or taken with the Original Synbiotic Formula (100% gluten free) to add inulin fiber fro chicory root and our excellent probiotics for daily regularity.

REFERENCES

Abdullah, M.M., Gyles, C.L., Marinangeli, C.P., Carlberg, J.G., Jones, P.J. (2015). Dietary fibre intakes and reduction in functional constipation rates among Canadian adults: a cost-of-illness analysis. Food Nutr Res, 59, 28646. Article

Abugoch James, L.E. (2009). Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Adv Food Nutr Res, 58, 1-31.DOI: 10.1016/S1043-4526(09)58001-1

Albertson, A.M., Reicks, M., Joshi, N., Gugger, C.K.(2016). Whole grain consumption trends and associations with body weight measures in the United States: results from the cross sectional National Health and Nutrition Examination Survey 2001-2012. Nutr J. 15, 8. DOI: 10.1016/j.jada.2006.06.003

American Dietetic Association (2008). Position of the American Dietetic Association: Health implications of Dietary Fiber. Journal of the American Dietetic Association, 108(10), 1716-1731. https://doi.org/10.1016/j.jada.2008.08.007

Bai, C.Z., Feng, M.L., Hao, X.L., Zhong, Q.M., Tong, L.G., Wang, Z.H. (2015). Rutin, quercetin, and free amino acid analysis in buckwheat (Fagopyrum) seeds from different locations. Genet Mol Res, 14(4), 19040-8. DOI: 10.4238/2015.December.29.11

Ballabio, C., Uberti, F., Di Lorenzo, C., Brandolini, A., Penas, E., Restani, P.(2011). Biochemical and immunochemical characterization of different varieties of amaranth (Amaranthus L. ssp.) as a safe ingredient for gluten-free products. J Agric Food Chem. 59 (24):12969-74.DOI: 10.1021/jf2041824

Caselato-Sousa VM, Amaya-Farfán J.(2012). State of knowledge on amaranth grain: a comprehensive review. J Food Sci, 77(4), R93-104 . DOI: 10.1111/j.1750-3841.2012.02645.x

Chicco, A.G., D'Alessandro, M.E., Hein, G.J., Oliva, M.E., Lombardo, Y.B. (2009).Dietary chia seed (Salvia hispanica L.) rich in alpha-linolenic acid improves adiposity and normalises hypertriacylglycerolaemia and insulin resistance in dyslipaemic rats. Br J Nutr, 101(1), 41-50.DOI: 10.1017/S000711450899053X

Cooper, D.N., Kable, M.E., Marco, M.L., De Leon, A., Rust, B., Baker, J.E. … Keim, N.L. (2017). The Effects of Moderate Whole Grain Consumption on Fasting Glucose and Lipids, Gastrointestinal Symptoms, and Microbiota.Nutrients, 9(2). DOI: 10.3390/nu9020173

Czerwiński, J., Bartnikowska, E., Leontowicz, H., Lange, E., Leontowicz, M., Katrich, E., ... & Gorinstein, S. (2004). Oat (Avena sativa L.) and amaranth (Amaranthus hypochondriacus) meals positively affect plasma lipid profile in rats fed cholesterol-containing diets. The Journal of nutritional biochemistry, 15(10), 622-629. https://doi.org/10.1016/j.jnutbio.2004.06.002

de Vries, J., Birkett, A., Hulshof, T., Verbeke, K., Gibes, K. (2016). Effects of Cereal, Fruit and Vegetable Fibers on Human Fecal Weight and Transit Time: A Comprehensive Review of Intervention Trials.Nutrients, 8(3), 130. DOI: 10.3390/nu8030130

Filho, A.M., Pirozi, M.R., Borges, J.T., Pinheiro Sant'Ana, H.M., Chaves, J.B., Coimbra, J.S.(2017). Quinoa: Nutritional, functional, and antinutritional aspects. Crit Rev Food Sci Nutr. 57(8), 1618-1630. DOI: 10.1080/10408398.2014.1001811

Gabrial, S.G., Shakib, M.R., Gabrial, G.N.(2016). Effect of Pseudocereal-Based Breakfast Meals on the First and Second Meal Glucose Tolerance in Healthy and Diabetic Subjects. Open Access Maced J Med Sci, 4(4), 565-573 DOI: 10.3889/oamjms.2016.115

Georgoulis, M., Kontogianni, M.D., Tileli, N., Margaritie, A., Fragopoulou, E., Tiniakos, D., Zafiropoulou, R., & Papatheodoridis, G. (2014). The impact of cereal grain consumption on the development and severity of non-alcoholic fatty liver disease. Eur J Nutr, 53(8), 1727-35. DOI: 10.1007/s00394-014-0679-y

Graf, B.L., Rojas-Silva, P., Rojo, L.E., Delatorre-Herrera, J., Baldeón, M.E., Raskin, I. (2015). Innovations in Health Value and Functional Food Development of Quinoa (Chenopodium quinoa Willd.). Compr Rev Food Sci Food Saf, 14(4), 431-445. DOI:10.1111/1541-4337.12135

Kam, J., Puranik, S., Yadav, R., Manwaring, H. R., Pierre, S., Srivastava, R. K., & Yadav, R. S. (2016). Dietary interventions for type 2 diabetes: how millet comes to help. Frontiers in plant science, 7. DOI: 10.3389/fpls.2016.01454

Kranz, S., Dodd, K.W., Juan, W.Y., Johnson, L.K., Jahns, L. (2017). Whole Grains Contribute Only a Small Proportion of Dietary Fiber to the U.S. Diet. Nutrients, 9(2).DOI: 10.3390/nu9020153

Kreiter, T. (2005). SEEDS OF WELLNESS: RETURN OF A SUPERCR/lIN. Saturday Evening Post.

KUMAR, R., BHAYANA, S., & KAPOOR, S. (2015). THE ROLE OF FUNCTIONAL FOODS FOR HEALTHY LIFE: CURRENT PERSPECTIVES. Int J Pharm Bio Sci,6, 429-443. Article

Lambeau, K.V., McRorie, J.W. Jr.(2017). Fiber supplements and clinically proven health benefits: How to recognize and recommend an effective fiber therapy. J Am Assoc Nurse Pract, 29(4), 216-223. DOI: 10.1002/2327-6924.12447

Lamothe, L.M., Srichuwong, S., Reuhs, B.L., Hamaker, B.R. (2015). Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans. Food Chem, 167, 490-6. DOI: 10.1016/j.foodchem.2014.07.022

López, V. R. L., Razzeto, G. S., Giménez, M. S., & Escudero, N. L. (2011). Antioxidant properties of Amaranthus hypochondriacus seeds and their effect on the liver of alcohol-treated rats. Plant foods for human nutrition, 66(2), 157-162. DOI: 10.1007/s11130-011-0218-4

Mohd Ali, N., Yeap, S.K., Ho, W.Y, Beh, B.K., Tan, S.W., Tan, S.G. (2012).The promising future of chia, Salvia hispanica L. J Biomed Biotechnol. 2012, 171956. DOI: 10.1155/2012/171956

Mota, C., Santos, M., Mauro, R., Samman, N., Matos, A.S., Torres, D., Castanheira, I.(2016). Protein content and amino acids profile of pseudocereals. Food Chem193, 55-61.DOI: 10.1016/j.foodchem.2014.11.043

Nascimento, A.C., Mota, C., Coelho, I., Gueifão, S., Santos, M., Matos, A.S. … Castanheira I. (2014). Characterisation of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus), and purple corn (Zea mays L.) consumed in the North of Argentina: proximates, minerals and trace elements. Food Chem, 148, 420-6.DOI: 10.1016/j.foodchem.2013.09.155

Research

Food Science: The Application and Use of Whole Seeds for Dietary Fiber: Quinoa, Amaranth, Buckwheat, Chia, and Millet.*

Dietary Fiber for Regularity

Abdullah, M.M., Gyles, C.L., Marinangeli, C.P., Carlberg, J.G., Jones, P.J. (2015). Dietary fibre intakes and reduction in functional constipation rates among Canadian adults: a cost-of-illness analysis. Food Nutr Res, 59, 28646. Article

Albertson, A.M., Reicks, M., Joshi, N., Gugger, C.K.(2016). Whole grain consumption trends and associations with body weight measures in the United States: results from the cross sectional National Health and Nutrition Examination Survey 2001-2012. Nutr J. 15, 8. DOI: 10.1016/j.jada.2006.06.003

American Dietetic Association (2008). Position of the American Dietetic Association: Health implications of Dietary Fiber. Journal of the American Dietetic Association, 108(10), 1716-1731. https://doi.org/10.1016/j.jada.2008.08.007

Clemens, R., Kranz, S., Mobley, A.R., Nicklas, T.A., Raimondi, M.P., Rodriguez, J.C., … Warshaw, H. (2012). Filling American’s fiber intake gap: Summary of roundtable to probe realistic solutions with a focus on grain-based foods. J Nutr., 142(7), 1390-1401. DOI: 10.3945/jn.112.160176

Cooper, D.N., Kable, M.E., Marco, M.L., De Leon, A., Rust, B., Baker, J.E. … Keim, N.L. (2017). The Effects of Moderate Whole Grain Consumption on Fasting Glucose and Lipids, Gastrointestinal Symptoms, and Microbiota. Nutrients, 9(2). ). DOI:10.3390/nu9020173

Eswaran S., Muir J., & Chey W.D. (2013). Fiber and functional gastrointestinal disorders. Am J Gastroenterol, 108, 718–727. DOI: 10.1038/ajg.2013.63

de Vries, J., Birkett, A., Hulshof, T., Verbeke, K., Gibes, K. (2016). Effects of Cereal, Fruit and Vegetable Fibers on Human Fecal Weight and Transit Time: A Comprehensive Review of Intervention Trials.Nutrients, 8(3), 130. DOI: 10.3390/nu8030130

Holl, R.M. (2014). Bowel movement: the sixth vital sign. Holist Nurs Pract, 28(3), 195-7. DOI: 10.1097/HNP.0000000000000024

King, D.E., Mainous, A.G. 3rd, Lambourne, C.A. (2012). Trends in dietary fiber intake in the United States, 1999-2008. J Acad Nutr Diet, 112(5), 642-8. DOI: 10.1016/j.jand.2012.01.019

Kranz, S., Dodd, K.W., Juan, W.Y., Johnson, L.K., Jahns, L. (2017). Whole Grains Contribute Only a Small Proportion of Dietary Fiber to the U.S. Diet. Nutrients, 9(2).DOI: 10.3390/nu9020153

Kamar, M., Evans, C., Hugh-Jones, S. (2016). Factors influencing adolescent whole grain intake: A theory-based qualitative study. Appetite, 101, 125-33. DOI: 10.1016/j.appet.2012.04.014

Kuznesof, S., Brownlee, I.A., Moore, C., Richardson, D.P., Jebb, S.A., Seal, C.J.(2012). WHOLEheart study participant acceptance of wholegrain foods. Appetite, 59(1), 187-93. DOI: 10.1016/j.appet.2012.04.014

Lambeau, K.V., McRorie, J.W. Jr.(2017). Fiber supplements and clinically proven health benefits: How to recognize and recommend an effective fiber therapy. J Am Assoc Nurse Pract, 29(4), 216-223. DOI: 10.1002/2327-6924.12447

Lee, W.T., Ip, K.S., Chan, J.S., Lui, N.W., & Young, B.W. (2008). Increased prevalence of constipation in pre-school children is attributable to under-consumption of plant foods: a community-based study. J Paediatr Child Health, 44,170–175. DOI: 10.1111/j.1440-1754.2007.01212.x

McCallum, I.J., Ong, S., Mercer-Jones, M.(2009). Chronic constipation in adults. BMJ, 338, b831. DOI: 10.1097/HNP.0000000000000024

McRae, M.P. (2017). Health Benefits of Dietary Whole Grains: An Umbrella Review of Meta-analyses. J Chiropr Med, 16(1), 10-18. DOI: 10.1016/j.jcm.2016.08.008

Mobley, A.R., Jones, J.M., Rodriguez, J., Slavin, J., & Zelman, K.M. (2014). Identifying practical solutions to meet American’s fiber needs: Proceedings from the Food & Fiber Summit. Nutrients, 8(7), 2540-51. DOI: 10.3390/nu6072540

Morais, M.B., Vítolo, M.R., Aguirre, A.N., & Fagundes-Neto, U. (1999). Measurement of low dietary fiber intake as a risk factor for chronic constipation in children. J Pediatr Gastroenterol Nutr, 29, 132–135. Abstract

Neo, J.E., Brownlee, I.A.(2017). Wholegrain Food Acceptance in Young Singaporean Adults. Nutrients, 9(4). DOI: 10.3390/nu9040371

Radford, A., Langkamp-Henken, B., Hughes, C., Christman, M.C., Jonnalagadda, S., Boileau, T.W., Thielecke, F., Dahl, W.J.(2014). Whole-grain intake in middle school students achieves dietary guidelines for Americans and MyPlate recommendations when provided as commercially available foods: a randomized trial. J Acad Nutr Diet, 114 (9),1417-23.DOI: 10.1016/j.jand.2014.04.020

Sanjoaquin, M. A., Appleby, P. N., Spencer, E. A., & Key, T. J. (2004). Nutrition and lifestyle in relation to bowel movement frequency: a cross-sectional study of 20 630 men and women in EPIC–Oxford. Public health nutrition, 7(1), 77-83. DOI: https://doi.org/10.1079/PHN2003522

Schmier, J.K., Miller, P.E., Levine, J.A., Perez, V., Maki, K.C., Rains, T.M., … Alexander, D.D. (2014). Cost savings reduced constipation rates attributed to increased dietary fiber intakes: A decision-analytic model. BMC Public Health, 14-374. DOI: 10.1186/1471-2458-14-374

Seal, C.J., Brownlee, I.A.(2015). Whole-grain foods and chronic disease: evidence from epidemiological and intervention studies. Proc Nutr Soc, 74(3), 313-9. DOI: 10.1017/S0029665115002104

Williams, C.L. (1995). Importance of dietary fiber in childhood. J Am Diet Assoc, 95, 1140–1146. DOI: 10.1016/S0002-8223(95)00307-X

Dietary Fiber for Heart, Fatty Liver, and Diabetes Support

Abdullah, M.M., Gyles, C.L., Marinangeli, C.P., Carlberg, J.G., Jones, P.J. (2015). Cost-of-illness analysis reveals potential healthcare savings with reductions in type 2 diabetes and cardiovascular disease following recommended intakes of dietary fiber in Canada. Front Pharmacol, 6, 167. DOI: 10.1186/1471-2458-14-374

Baron, R.B. (2013). Eat more fiber. doi: https://doi.org/10.1136/bmj.f7401

Bing, F.C. (1976). Dietary fiber—in historical perspective.J Am Diet Assoc, 69(5), 498-505. Abstract

Georgoulis, M., Kontogianni, M.D., Tileli, N., Margaritie, A., Fragopoulou, E., Tiniakos, D., Zafiropoulou, R., & Papatheodoridis, G. (2014). The impact of cereal grain consumption on the development and severity of non-alcoholic fatty liver disease. Eur J Nutr, 53(8), 1727-35. DOI: 10.1007/s00394-014-0679-y

Grooms, K. N., Ommerborn, M. J., Pham, D. Q., Djoussé, L., & Clark, C. R. (2013). Dietary fiber intake and cardiometabolic risks among US adults, NHANES 1999-2010. The American journal of medicine, 126 (12), 1059-1067. DOI: 10.1016/j.amjmed.2013.07.023

Lappi, J., Kolehmainen, M. Mykkanen, H., & Poutanen, K. (2013). Do large intestinal events explain the protective effects of whole grain foods against type 2 diabetes? Crit Rev Food Sci Nutri, 53(6), 631-40. DOI: 10.1080/10408398.2010.550388

Li, S., Flint, A., Pai, J.K., Forman, J.P., Hu, F.B, Willett, W.C…. Rimm, E.B. (2014). Dietary ifber intake and mortality among survivors of myocardial infarction: prospective cohort study. BMJ. doi: https://doi.org/10.1136/bmj.g2659

Ross, A.B., Godin, J.P., Minehira, K., & Kirwan, J.P. (2013). Increasing whole grain intake as part of prevention and treatment of nonalcoholic fatty liver disease. Int j Endocrinol. DOI: 10.1155/2013/585876

Satija, A., & Hu, F.B. (2012). Cardiovascular benefits of dietary fiber. Curr Atheroscler Rep, 14(6), 505-14. DOI: 10.1007/s11883-012-0275-7

Streppel, M.T., Ocke, M.C., Boshuizen, H.C., Kok, F.J., & Kromhout, D. (2008). Dietary fiber intake in relation to coronary heart disease and all-cause mortality over 40 y: the Zutphen Study. Am J Clin Nutr, 88, 1119-25. Article

Threapleton, D.E., Greenwood, D.C., Evans, C.E.L., Cleghorn, C.L., Nykjaer, C., woodhead, C…. Burley, V.J. (2013). Dietary fibre intake and risk of cardiovascular disease: Systematic review and meta-analysis. doi: https://doi.org/10.1136/bmj.f6879 .

Trowell, H. (1976). Definition of dietary fiber and hypotheses that it is protective factor in certain diseases. Am J Clin Nutri, 29(4), 417-27. Abstract

van Gijssel, R.M., Braun, K.V., Kiefte-de Jong, J.C., Jaddoe, V.W., Franco, O.H., Voortman, T.(2016). Associations between Dietary Fiber Intake in Infancy and Cardiometabolic Health at School Age: The Generation R Study. Nutrients. 8(9). DOI: 10.3390/nu8090531

Ye, E.Q., Chacko, S.A., Chou, E.L., Kugizaki, M., & Liu, S. (2012). Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain. J Nutr, 147(7), 1304-13. DOI: 10.3945/jn.111.155325

Quinoa (Chenopodium quinoa) Whole Seed

Abderrahim, F., Huanatico, E., Segura, R., Arribas, S., Gonzalez, M. C., & Condezo-Hoyos, L. (2015). Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano. Food chemistry, 183, 83-90.

Abugoch James, L.E. (2009). Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Adv Food Nutr Res, 58, 1-31.DOI: 10.1016/S1043-4526(09)58001-1

Alvarez-Jubete, L., Arendt, E.K., Gallagher, E.(2009). Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. Int J Food Sci Nutr, 60 Suppl 4, 240-57.DOI: 10.1080/09637480902950597

Filho, A.M., Pirozi, M.R., Borges, J.T., Pinheiro Sant'Ana, H.M., Chaves, J.B., Coimbra, J.S.(2017). Quinoa: Nutritional, functional, and antinutritional aspects. Crit Rev Food Sci Nutr. 57(8), 1618-1630. DOI: 10.1080/10408398.2014.1001811

Gabrial, S.G., Shakib, M.R., Gabrial, G.N.(2016). Effect of Pseudocereal-Based Breakfast Meals on the First and Second Meal Glucose Tolerance in Healthy and Diabetic Subjects. Open Access Maced J Med Sci, 4(4), 565-573 DOI: 10.3889/oamjms.2016.115

Graf, B.L., Rojas-Silva, P., Rojo, L.E., Delatorre-Herrera, J., Baldeón, M.E., Raskin, I. (2015). Innovations in Health Value and Functional Food Development of Quinoa (Chenopodium quinoa Willd.). Compr Rev Food Sci Food Saf, 14(4), 431-445. DOI:10.1111/1541-4337.12135

Kozioł, M. J. (1992). Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). Journal of Food Composition and Analysis, 5(1), 35-68. Abstract

Nowak, V., Du, J., Charrondière, U.R.(2016). Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem, 193, 47-54. DOI: 10.1016/j.foodchem.2015.02.111

Nsimba, R. Y., Kikuzaki, H., & Konishi, Y. (2008). Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food chemistry, 106(2), 760-766. https://doi.org/10.1016/j.foodchem.2007.06.004

Ogungbenle HN.(2003). Nutritional evaluation and functional properties of quinoa (Chenopodium quinoa) flour. Int J Food Sci Nutr, 54(2), 153-8.DOI: 10.1080/0963748031000084106

Simnadis, T. G., Tapsell, L. C., & Beck, E. J. (2015). Physiological effects associated with Quinoa consumption and implications for research involving humans: a review. Plant foods for human nutrition, 70(3), 238-249. DOI: 10.1007/s11130-015-0506-5

Tang, Y., Zhang, B., Li, X., Chen, P. X., Zhang, H., Liu, R., & Tsao, R. (2016). Bound phenolics of quinoa seeds released by acid, alkaline, and enzymatic treatments and their antioxidant and α-glucosidase and pancreatic lipase inhibitory effects. Journal of agricultural and food chemistry, 64(8), 1712-1719. DOI: 10.1021/acs.jafc.5b05761

Tang, Y., Li, X., Zhang, B., Chen, P. X., Liu, R., & Tsao, R. (2015). Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry, 166, 380-388. DOI: 10.1016/j.foodchem.2014.06.018

Vega-Gálvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., Martínez, E.A.(2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review.J Sci Food Agric, 90(15), 2541-7.DOI: 10.1002/jsfa.4158

Zhu, N., Sheng, S., Li, D., LaVoie, E. J., Karwe, M. V., Rosen, R. T., & HO, C. T. (2001). Antioxidative flavonoid glycosides from quinoa seeds (Chenopodium quinoa Willd). Journal of Food Lipids, 8(1), 37-44. Abstract

Amaranth (Amaranthus hypochondriacus) Whole Seed

Ballabio, C., Uberti, F., Di Lorenzo, C., Brandolini, A., Penas, E., Restani, P.(2011). Biochemical and immunochemical characterization of different varieties of amaranth (Amaranthus L. ssp.) as a safe ingredient for gluten-free products. J Agric Food Chem. 59 (24):12969-74.DOI: 10.1021/jf2041824

Caselato-Sousa VM, Amaya-Farfán J.(2012). State of knowledge on amaranth grain: a comprehensive review. J Food Sci, 77(4), R93-104 . DOI: 10.1111/j.1750-3841.2012.02645.x

Czerwiński, J., Bartnikowska, E., Leontowicz, H., Lange, E., Leontowicz, M., Katrich, E., ... & Gorinstein, S. (2004). Oat (Avena sativa L.) and amaranth (Amaranthus hypochondriacus) meals positively affect plasma lipid profile in rats fed cholesterol-containing diets. The Journal of nutritional biochemistry, 15(10), 622-629. https://doi.org/10.1016/j.jnutbio.2004.06.002

de la Rosa, A. B., Fomsgaard, I. S., Laursen, B., Mortensen, A. G., Olvera-Martínez, L., Silva-Sánchez, C., ... & De León-Rodríguez, A. (2009). Amaranth (Amaranthus hypochondriacus) as an alternative crop for sustainable food production: Phenolic acids and flavonoids with potential impact on its nutraceutical quality. Journal of Cereal Science, 49(1), 117-121. https://doi.org/10.1016/j.jcs.2008.07.012

Lamothe, L.M., Srichuwong, S., Reuhs, B.L., Hamaker, B.R. (2015). Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans. Food Chem, 167, 490-6. DOI: 10.1016/j.foodchem.2014.07.022

López, V. R. L., Razzeto, G. S., Giménez, M. S., & Escudero, N. L. (2011). Antioxidant properties of Amaranthus hypochondriacus seeds and their effect on the liver of alcohol-treated rats. Plant foods for human nutrition, 66(2), 157-162. DOI: 10.1007/s11130-011-0218-4

Maldonado-Cervantes, E., Jeong, H. J., León-Galván, F., Barrera-Pacheco, A., De León-Rodríguez, A., de Mejia, E. G., ... & de la Rosa, A. P. B. (2010). Amaranth lunasin-like peptide internalizes into the cell nucleus and inhibits chemical carcinogen-induced transformation of NIH-3T3 cells. Peptides, 31(9), 1635-1642. DOI: 10.1016/j.peptides.2010.06.014

Mota, C., Santos, M., Mauro, R., Samman, N., Matos, A.S., Torres, D., Castanheira, I.(2016). Protein content and amino acids profile of pseudocereals. Food Chem193, 55-61.DOI: 10.1016/j.foodchem.2014.07.022

Nascimento, A.C., Mota, C., Coelho, I., Gueifão, S., Santos, M., Matos, A.S. … Castanheira I. (2014). Characterisation of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus), and purple corn (Zea mays L.) consumed in the North of Argentina: proximates, minerals and trace elements. Food Chem, 148, 420-6.DOI: 10.1016/j.foodchem.2013.09.155

Pavlik, V. (2012).The revival of Amaranth as a third-millennium food. Neuro Endocrinol Lett, 33 Suppl 3:3-7. Abstract

Rastogi, A., Shukla, S.(2013). Amaranth: a new millennium crop of nutraceutical values. Crit Rev Food Sci Nutr, 53(2), 109-25. DOI: 10.1080/10408398.2010.517876

Silva-Sánchez, C., De La Rosa, A. B., León-Galván, M. F., De Lumen, B. O., de León-Rodríguez, A., & de Mejía, E. G. (2008). Bioactive peptides in amaranth (Amaranthus hypochondriacus) seed. Journal of agricultural and food chemistry, 56(4), 1233-1240. DOI: 10.1021/jf072911z

Soares, R. A. M., Mendonça, S., de Castro, L. Í. A., Menezes, A. C. C. C. C., & Arêas, J. A. G. (2015). Major peptides from amaranth (Amaranthus cruentus) protein inhibit HMG-CoA reductase activity. International journal of molecular sciences, 16(2), 4150-4160. DOI: 10.3390/ijms16024150

Tang, Y., Tsao, R.(2017). Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: a review. Mol Nutr Food Res, 61(7). DOI: 10.1002/mnfr.201600767

Tyszka-Czochara, M., Pasko, P., Zagrodzki, P., Gajdzik, E., Wietecha-Posluszny, R., Gorinstein, S. (2016). Selenium Supplementation of Amaranth Sprouts Influences Betacyanin Content and Improves Anti-Inflammatory Properties via NFκB in Murine RAW 264.7 Macrophages. Biol Trace Elem Res, 169(2), 320-30. DOI: 10.1007/s12011-015-0429-x

Velarde-Salcedo, A. J., Barrera-Pacheco, A., Lara-González, S., Montero-Morán, G. M., Díaz-Gois, A., de Mejia, E. G., & de la Rosa, A. P. B. (2013). In vitro inhibition of dipeptidyl peptidase IV by peptides derived from the hydrolysis of amaranth (Amaranthus hypochondriacus L.) proteins. Food chemistry, 136(2), 758-764. DOI: 10.1016/j.foodchem.2012.08.032

Buckwheat ( Fagopyrum esculentum) Whole Seed

Bai, C.Z., Feng, M.L., Hao, X.L., Zhong, Q.M., Tong, L.G., Wang, Z.H. (2015). Rutin, quercetin, and free amino acid analysis in buckwheat (Fagopyrum) seeds from different locations. Genet Mol Res, 14(4), 19040-8. DOI: 10.4238/2015.December.29.11

Giménez-Bastida, J.A., Zieliński, H. (2015). Buckwheat as a Functional Food and Its Effects on Health. J Agric Food Chem, 63(36):7896-913. DOI: 10.1021/acs.jafc.5b02498

Kreft, I., Fabjan, N., & Yasumoto, K. (2006). Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chemistry, 98(3), 508-512. https://doi.org/10.1016/j.foodchem.2005.05.081

Jiang, P., Burczynski, F., Campbell, C., Pierce, G., Austria, J. A., & Briggs, C. J. (2007). Rutin and flavonoid contents in three buckwheat species Fagopyrum esculentum, F. tataricum, and F. homotropicum and their protective effects against lipid peroxidation. Food Research International, 40(3), 356-364. https://doi.org/10.1016/j.foodres.2006.10.009

KUMAR, R., BHAYANA, S., & KAPOOR, S. (2015). THE ROLE OF FUNCTIONAL FOODS FOR HEALTHY LIFE: CURRENT PERSPECTIVES. Int J Pharm Bio Sci,6, 429-443. Article

Li, S.Q., Zhang, Q.H.(2001). Advances in the development of functional foods from buckwheat. Crit Rev Food Sci Nutr, 41(6), 451-64. DOI: 10.1080/20014091091887

Quettier-Deleu, C., Gressier, B., Vasseur, J., Dine, T., Brunet, C., Luyckx, M., ... & Trotin, F. (2000). Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of ethnopharmacology, 72(1), 35-42. https://doi.org/10.1016/S0378-8741(00)00196-3

Watanabe, M. (1998). Catechins as antioxidants from buckwheat (Fagopyrum esculentum Moench) groats. Journal of Agricultural and Food Chemistry, 46(3), 839-845. DOI:10.1021/jf9707546

Zhu, F. (2016).Chemical composition and health effects of Tartary buckwheat. Food Chem, 203, 231-45. DOI: 10.1016/j.foodchem.2016.02.050

Žvikas, V., Pukelevičienė, V., Ivanauskas, L., Pukalskas, A., Ražukas, A., Jakštas, V. (2016). Variety-based research on the phenolic content in the aerial parts of organically and conventionally grown buckwheat. Food Chem, 13, 660-7. DOI: https://doi.org/10.1016/j.foodchem.2016.07.010

Chia (Salvia hispanica L.) Whole seed

Chicco, A.G., D'Alessandro, M.E., Hein, G.J., Oliva, M.E., Lombardo, Y.B. (2009).Dietary chia seed (Salvia hispanica L.) rich in alpha-linolenic acid improves adiposity and normalises hypertriacylglycerolaemia and insulin resistance in dyslipaemic rats. Br J Nutr, 101(1), 41-50.DOI: 10.1017/S000711450899053X

da Silva, B.P., Dias, D.M., de Castro Moreira, M.E., Toledo, R.C., da Matta, S.L. … Pinheiro-Sant'Ana, H.M.(2016). Chia Seed Shows Good Protein Quality, Hypoglycemic Effect and Improves the Lipid Profile and Liver and Intestinal Morphology of Wistar Rats. Plant Foods Hum Nutr. 71(3), 225-30.DOI: 10.1007/s11130-016-0543-8

Marchinek, K. Kreipcio, Z. (2017). Chia seeds (Salvia hispanica): health promoting properties and therapeutic applications – a review.Rocz Panstw Zaki Hig, 68, (2), 123-29. Abstract

Mohd Ali, N., Yeap, S.K., Ho, W.Y, Beh, B.K., Tan, S.W., Tan, S.G. (2012).The promising future of chia, Salvia hispanica L.J Biomed Biotechnol. 2012, 171956. DOI: 10.1155/2012/171956

Poudyal, H., Panchal, S.K, Waanders, J., Ward, L., Brown, L. (2012). Lipid redistribution by α-linolenic acid-rich chia seed inhibits stearoyl-CoA desaturase-1 and induces cardiac and hepatic protection in diet-induced obese rats. J Nutr Biochem, 23(2), 153-62. DOI: 10.1016/j.jnutbio.2010.11.011

Rossi, A. S., Oliva, M. E., Ferreira, M. R., Chicco, A., & Lombardo, Y. B. (2013). Dietary chia seed induced changes in hepatic transcription factors and their target lipogenic and oxidative enzyme activities in dyslipidaemic insulin-resistant rats. British Journal of Nutrition , 109(9), 1617-1627. DOI: 10.1017/S0007114512003558

Ullah, R., Nadeem, M., Khalique, A., Imran, M., Mehmood, S., Javid, A., Hussain. J. (2016).Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): a review. J Food Sci Technol, 53(4), 1750-8.DOI: 10.1007/s13197-015-1967-0

Valdivia-López, M.Á., Tecante, A. (2015). Chia (Salvia hispanica): A Review of Native Mexican Seed and its Nutritional and Functional Properties. Adv Food Nutr Res, 75, 53-75. DOI: 10.1016/bs.afnr.2015.06.002

Millet (Panicum Miliaceum) Whole Seed/Grain

Amadou, I., Gounga, M. E., & Le, G. W. (2013). Millets: Nutritional composition, some health benefits and processing-A review. Emirates Journal of Food and Agriculture, 25(7), 501. ProQuest

Chandrasekara, A., Shahidi, F. (2012). Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation. J Funct Foods 4, 22637 . https://doi.org/10.1016/j.jff.2011.11.001

Chandrasekara, A., & Shahidi, F. (2011). Antiproliferative potential and DNA scission inhibitory activity of phenolics from whole millet grains. Journal of Functional Foods, 3(3), 159-170. https://doi.org/10.1016/j.jff.2011.03.008

Chandrasekara, A., & Shahidi, F. (2010). Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity. Journal of agricultural and food chemistry, 58(11), 6706-6714. DOI: 10.1021/jf100868b

Geervani, P., & Eggum, B. O. (1989). Nutrient composition and protein quality of minor millets.Plant Foods for Human Nutrition (Formerly Qualitas Plantarum),39(2), 201-208. Abstract

Gupta, S., Shrivastava, S. K., & Shrivastava, M. (2014). Proximate composition of seeds of hybrid varieties of minor millets. Int. J. Res. Eng. Technol, 3, 687-693. Article

Habiyaremye, C., Matanguihan, J. B., Guedes, J. D. A., Ganjyal, G. M., Whiteman, M. R., Kidwell, K. K., & Murphy, K. M. (2016). Proso Millet (Panicum miliaceum L.) and Its Potential for Cultivation in the Pacific Northwest, US: A Review. Frontiers in plant science, 7. DOI: 10.3389/fpls.2016.01961

Kalinova, J., & Moudry, J. (2006). Content and quality of protein in proso millet (Panicum miliaceum L.) varieties. Plant Foods for Human Nutrition, 61(1), 43. DOI: 10.1007/s11130-006-0013-9

Kam, J., Puranik, S., Yadav, R., Manwaring, H. R., Pierre, S., Srivastava, R. K., & Yadav, R. S. (2016). Dietary interventions for type 2 diabetes: how millet comes to help. Frontiers in plant science, 7. DOI: 10.3389/fpls.2016.01454

Lu, H., Zhang, J., Liu, K. B., Wu, N., Li, Y., Zhou, K., ... & Shen, L. (2009). Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proceedings of the National Academy of Sciences, 106(18), 7367-7372. Abstract

Nishizawa, N., Sato, D., Ito, Y., Nagasawa, T., Hatakeyama, Y., Choi, M. R., ... & Wei, Y. M. (2002). Effects of dietary protein of proso millet on liver injury induced by D-galactosamine in rats. Bioscience, biotechnology, and biochemistry, 66(1), 92-96. http://dx.doi.org/10.1271/bbb.66.92

Park, K. O., Ito, Y., Nagasawa, T., Choi, M. R., & Nishizawa, N. (2008). Effects of dietary Korean proso-millet protein on plasma adiponectin, HDL cholesterol, insulin levels, and gene expression in obese type 2 diabetic mice. Bioscience, biotechnology, and biochemistry,72(11), 2918-2925. Abstract

Pathak H. C. (2013). Role of Millets in Nutritional Security of India. New Delhi: National Academy of Agricultural Sciences, 1–16. Policy Paper 66 : Role of millets in Nutritional Security of India NAAS

Sreeremya, S. (2017). Nutritional Aspects of Chiya Seeds. International journal of advance research and development, 2(2). Nutritional Aspects of Chiya Seeds

Shahidi, F., & Chandrasekara, A. (2013). Millet grain phenolics and their role in disease risk reduction and health promotion: A review. Journal of Functional Foods, 5(2), 570-581. https://doi.org/10.1016/j.jff.2013.02.004

Saleh, A. S., Zhang, Q., Chen, J., & Shen, Q. (2013). Millet grains: nutritional quality, processing, and potential health benefits. Comprehensive Reviews in Food Science and Food Safety, 12 (3), 281-295. Article

Zhang, L., Liu, R., & Niu, W. (2014). Phytochemical and antiproliferative activity of proso millet. PloS one, 9 (8), e104058. https://doi.org/10.1371/journal.pone.0104058

Dietary Fiber: Energy and Weight Loss Support

Giacco, R., Della Pepa, G., Luongo, D., & Riccardi G. (2011). Whole grain intake in relation to body weight: from epidemiological evidence to clinical trails. Nutr Metab Cardiovasc Dis, 21(12), 901-8. DOI: 10.1016/j.numecd.2011.07.003

Karl, J.P., Meydani, M., Barnett, J.B., Vanegas, S.M., Goldin, B., Kane, A. … Roberts, S.B. (2017). Substituting whole grains for refined grains in a 6-wk randomized trial favorably affects energy-balance metrics in healthy men and postmenopausal women. Am J Clin Nutr, 105(3), 589-599. DOI: 10.3945/ajcn.116.139683

Karl, J.P., Saltzman E. (2012). The role of whole grains in body weight regulation. Adv Nutr, 3(5), 697-707. DOI: 10.3945/an.112.002782

Ma, X., Tang, W.G., Yang, Y., Zhang, Q.L., Zheng, J.L., Xiang, Y.B. (2016). Association between whole grain intake and all-cause mortality: a meta-analysis of cohort studies. Oncotarget, 7(38), 61996-62005.DOI: 10.18632/oncotarget.11491

Dietary Fiber and the Microbiome

Martinez, I., Lattimer, J.M., Hubach, K.L., Case, J.A., Yang, J., Weber, C.G….Walter, J. (2013). Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 7(2), 269-80. DOI: 10.1038/ismej.2012.104

Sonnenburg, E.D., Sonnenburg, J.L. (2014). Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab, 20(5), 779-86. doi: 10.1016/j.cmet.2014.07.003. DOI: 10.1016/j.cmet.2014.07.003

Speliotes, E. K., Willer, C. J., Berndt, S. I., Monda, K. L., Thorleifsson, G., Jackson, A. U., ... & Randall, J. C. (2010). Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index.Nat Genet, 42(11), 937-48. DOI: 10.1038/ng.686

Walter, J., Martinez, I, Rose, D.J. (2013). Holobiont nutrition: considering the role of the gastrointestinal microbiota in the health benefits of whole grains. Gut Microbes, 4(4), 340-6. DOI: 10.4161/gmic.24707

Dietary Fiber, Prebiotic and Cancer Support

O'Keefe, S. J., Ou, J., Aufreiter, S., O'Connor, D., Sharma, S., Sepulveda, J., ... & Mawhinney, T. (2009). Products of the colonic microbiota mediate the effects of diet on colon cancer risk.The Journal of nutrition, 139(11), 2044-2048. DOI: 10.3945/jn.109.104380

O'keefe, S. J., Chung, D., Mahmoud, N., Sepulveda, A. R., Manafe, M., Arch, J., ... & van der Merwe, T. (2007). Why do African Americans get more colon cancer than Native Africans?. The Journal of nutrition,137(1), 175S-182S. Abstract

Roberfroid, M., Gibson, G. R., Hoyles, L., McCartney, A. L., Rastall, R., Rowland, I., ... & Guarner, F. (2010). Prebiotic effects: metabolic and health benefits. British Journal of Nutrition, 104(S2), S1-S63. Abstract

Dietary Fiber and Diverticulosis Support

Crowe, F.L., Appleby, P.N., Allen, N.E., & Key T.J. (2011). Diet and risk of diverticular disease in Oxford cohort of European Prospective Investigation into Cancer and Nutrition (EPIC): prospective study of British vegetarians and non-vegetarians. BMJ, 343:d4131. doi: 10.1136/bmj.d4131

Strate, L.L., Keeley, B.R., Cao, Y., Wu, K., Giovannucci, E.L., & Chan, A.T. (2017). Western Dietary Pattern Increases, and Prudent Dietary Pattern Decreases, Risk of Incident Diverticulitis in a Prospective Cohort Study. Gastroenterology, 152(5), 1023-30. DOI: 10.1053/j.gastro.2016.12.038

† Dietary Fibers are found in whole seeds such as Quinoa, Amaranth, Buckwheat, Chia, and Millet (which some consider as whole grain). Dietary fiber are also found in whole grains such as Oats in the Beta Glucan Synbiotic, as well as in vegetables and roots, such as Inulin from Chicory Root (Original Synbiotic, Beta Glucan Synbiotic, and No 7 Systemic Booster), and red beetroot, (see Beta Glucan Synbiotic).

Ingredients

One 30 Scoop Contains: 
Calories 107g
Water 2.4g 
Protein 4.59g 
Carbohydrates 21.1g 
Fat (Total) 1.52g
Ash 0.43g
Sugars 0.31g
Other Carbohydrates 13.1g 
Dietary Fiber 7.66g
Saturated Fat 0.14g 
Monounsaturated Fat 0.11g 
Polyunsaturated Fat 0.34g 
Thiamin B1 0.05mg 
Riboflavin B2 0.05mg 
Niacin B3 0.61mg 
Niacin Equiv. 1.02mg 
Vitamin B6 0.02mg 
Folate 4.16mg 
Pantothenic Acid 0.08mg 
Vitamin C 0.39mg 
Vitamin E Alpha 0.07mg 
Calcium 20.8mg 
Copper 0.057mg 
Iron 1.69mg 
Magnesium 19.43mg 
Manganese 0.17mg 
Phosphorus 94.72mg 
Potassium 80.15mg 
Sodium 4.14mg 
Zinc 0.25mg 
Amino Acids 4,419 mg (per 36g) 
  Aspartic Acid 315mg 
  Threonine 139mg 
  Serine 211mg 
  Glutamic Acid 744mg 
  Proline 173mg 
  Glycine 200mg 
  Alanine 219mg 
  Valine 152mg 
  Isoleucine 140mg 
  Leucine 288mg 
  Tyrosine 135mg 
  Phenylalanine 173mg 
  Lysine 164mg 
  Histidine 86mg 
  Arginine 321mg 
  Cystine 77mg 
  Methionine 54mg 
  Tryptophan 53mg

Protocols

Staff of Life — Staff of Life is a nutritional powerhouse of organic indigenous seeds designed to nourish your body deeply, encourage a daily bowel movement, increase energy and endurance during exercise, and in research shows a host of health benefits.*

Daily regularity:  Take 1-2 tablespoons, mix in diluted juice.  Add to cereals, or other baked goods. For a chronic state of constipation, add the Beta Glucan, flax seeds, berries, and greens. Take 1 teaspoon of the No 7 in the evenings.*

Vegans: As a meal replacement, Staff of Life offers a deep nutritional value. Excellent as a drink to increase vitality.

Sports: mix in water or diluted juice twenty minutes before exercise for more energy and endurance.*

Our favorite: Our morning smoothie with Staff of Life and Beta Glucan, along with berries, fruits, and greens, flax seeds and diluted juice is meant to bring in more fiber, probiotics, and nutrients to the whole microbiome system.*

Net Orders Checkout

Item Price Qty Total
Subtotal $0.00
Shipping
Total

Shipping Address

Shipping Methods