Fructo Borate Complex
Joint & Bone Health
The Fructo Borate Complex is a new form of boron based on the organic mineral structure found in whole foods.
Exceptionally bio-available, Fructo Borate is highly effective for joint and bone health. This organic form of boron is able to cross the gastrointestinal barrier into the systemic circulation intact with its carbohydrate linkage.
As a master mineral, boron is responsible for the support of many metabolic pathways: the osteo-skeletal system, endocrine system, and immune system. Boron supplementation is important due to faulty farming practices that have depleted boron from the soil.
The Fructo Borate is Vegan, Kosher, Non GMO, and Gluten Free.
- Description
- Research
- Ingredients
- Protocol
New form of boron supplementation that is the exact molecular structure of dietary boron found in fruits, vegetables and nuts. US Patent #US 5962049 A. Fructo Borate 240 mg with calcium ascorbate 260 mg provides 6 mg of elemental boron. No excipients. 60 capsules per bottle. 500 mg per vegetarian capsule.
- Patented Technology creates a highly effective Fructo Borate molecule.
- 240mg fructoborate and 260mg calcium ascorbate per vegetarian capsule.
- Each capsule supplies 6mg of elemental boron.
- New form of boron supplementation: US patented carbohydrate bound boron.
- Exact duplicate of dietary boron found in fruits, vegetables and nuts.
- Association Constant high: Receptor sites receive entire molecule.
- Osteoporosis: Reduces excretion of Mg and Ca, re-mineralizes bone.
- Use therapeutically against osteoarthritis: Reduces pain and swelling and increases mobility.
- Down-regulates immune system: Reduces over-reactive neutrophil levels.
- Anti-oxidant: Increases SOD and Catalase production.
- Anti-aging: Increases Vitamin D and Steroid hormone levels in the blood.
- Anti-cancer: Reduces PSA marker for prostate cancer.
- Clinical trial: 1 to 2 capsules BID to reduce pain and regenerate bone; 1 capsule daily for maintenance. Observed results period is from 2-8 weeks.
- No filler, flowing agents or excipients of any kind.
FOOD SCIENCE: THE APPLICATION AND USE OF Fructo Borate [plant-based Dietary boron].*
Arthritis and Osteoporosis: Bone and Joint Health
Baldivia, A. S. (2016). 10. Will boron be essential for human nutrition?. Archivos Latinoamericanos de Nutrición, 66(1). Article
Bartl, R., & Bartl, C. (2019). A Step-by-Step Programme for Healthy Bones. In The Osteoporosis Manual (pp. 137-150). Springer, Cham. Abstract
Beattie, J. H., & Peace, H. S. (1993). The influence of a low-boron diet and boron supplementation on bone, major mineral and sex steroid metabolism in postmenopausal women. British journal of nutrition, 69(3), 871-884. Article
Boyacioglu, O., Orenay-Boyacioglu, S., Yildirim, H., & Korkmaz, M. (2018). Boron intake, osteocalcin polymorphism and serum level in postmenopausal osteoporosis. Journal of Trace Elements in Medicine and Biology, 48, 52-56. Abstract
Bunker, V. W. (1994). The role of nutrition in osteoporosis. British journal of biomedical science, 51(3), 228-240. Abstract
Devirian, T. A., & Volpe, S. L. (2003). The physiological effects of dietary boron. Article
Gaby, A. R. (1999). Natural treatments for osteoarthritis. Alternative Medicine Review, 4, 330-341. Article
Goldstein, M. C., & Goldstein, M. A. (2018). Vitamins and Minerals: Fact Versus Fiction. ABC-CLIO. BookP.4-5
Helliwell, T. R., Kelly, S. A., Walsh, H. P. J., Klenerman, L., Haines, J., Clark, R., & Roberts, N. B. (1996). Elemental analysis of femoral bone from patients with fractured neck of femur or osteoarthrosis. Bone, 18(2), 151-157. Abstract
Hunter, J. M., Nemzer, B. V., Rangavajla, N., Biţă, A., Rogoveanu, O. C., Neamţu, J., ... & Mogoşanu, G. D. (2019). The Fructoborates: Part of a Family of Naturally Occurring Sugar–Borate Complexes—Biochemistry, Physiology, and Impact on Human Health: a Review. Biological trace element research, 188(1), 11-25. Article
Jain, R., & Tiwari, A. (2019). Boron: A dietary mineral for human health. Apollo Medicine, 16(1), 66. Article
Khaliq, H., Juming, Z., & Ke-Mei, P. (2018). The physiological role of boron on health. Biological trace element research, 186(1), 31-51. Article
Lewiecki, E. M., Bilezikian, J. P., Carey, J. J., Dell, R. M., Gordon, C. M., Harris, S. T., ... & Rosenblatt, M. (2018). Proceedings of the 2017 Santa Fe Bone Symposium: insights and emerging concepts in the management of osteoporosis. Journal of Clinical Densitometry, 21(1), 3-21. Article
Lu, X., Li, K., Xie, Y., Qi, S., Shen, Q., Yu, J., ... & Zheng, X. (2019). Improved osteogenesis of boron incorporated calcium silicate coatings via immunomodulatory effects. Journal of Biomedical Materials Research Part A, 107(1), 12-24. Article
McCoy, H., Kenney, M. A., Montgomery, C., Irwin, A., Williams, L., & Orrell, R. (1994). Relation of boron to the composition and mechanical properties of bone. Environmental Health Perspectives, 102(suppl 7), 49-53. Article
Maslin, K., & Dennison, E. (2019). Diet and Bone Health. In Analysis in Nutrition Research (pp. 337-354). Academic Press. Chapter13
Meacham, S. L., Taper, L. J., & Volpe, S. L. (1994). Effects of boron supplementation on bone mineral density and dietary, blood, and urinary calcium, phosphorus, magnesium, and boron in female athletes. Environmental health perspectives, 102(suppl 7), 79-82. Article
Miljkovic, D., Scorei, R. I., Cimpoiaşu, V. M., & Scorei, I. D. (2009). Calcium fructoborate: plant-based dietary boron for human nutrition. Journal of dietary supplements, 6(3), 211-226. Article
Moustafa, S. R. (2019). Relationship of some ultra trace elements with atherosclerosis. Zanco Journal of Medical Sciences (Zanco J Med Sci), 23(1), 66-73. Article
Morelli, V., Naquin, C., & Weaver, V. (2003). Alternative therapies for traditional disease states: osteoarthritis. American Family Physician, 67(2), 339-346. Article
Newnham, R. E. (2002). How boron is being used in medical practice. In Boron in plant and animal nutrition (pp. 59-62). Springer, Boston, MA. Abstract
Newnham, R.E. (1994). Essentiality of boron for health bones and joints. Environmental health perspective, 102 (suppl 7), 83-85. Article
Nielsen, F. H. (2014). Update on human health effects of boron. Journal of Trace Elements in Medicine and Biology, 28(4), 383-387. Abstract
Nielsen, F. H. (2008). Is boron nutritionally relevant?. Nutrition reviews, 66(4), 183-191. Article
Nielsen, F. H. (1990). Studies on the relationship between boron and magnesium which possibly affects the formation and maintenance of bones [electronic resource]. Magnesium and trace elements, 9(2), 61. Article
Nielsen, F. H., Hunt, C. D., Mullen, L. M., & Hunt, J. R. (1987). Effect of dietary boron on mineral, estrogen, and testosterone metabolism in postmenopausal women. The FASEB journal, 1(5), 394-397. Article
Pietrzkowski, Z., Mercado-Sesma, A. R., Argumedo, R., Cervantes, M., Nemzer, B., & Reyes-Izquierdo, T. (2018). Effects of once-daily versus twice daily dosing of calcium fructoborate on knee discomfort. A 90 day, double-blind, placebo controlled randomized clinical study. J Aging Res Clin Pract, 7(1), 31-36. Article
Pizzorno, L. (2015). Nothing boring about boron. Integrative Medicine: A Clinician's Journal, 14(4), 35. Article
Prejac, J., Skalny, A. A., Grabeklis, A. R., Uzun, S., Mimica, N., & Momčilović, B. (2018). Assessing the boron nutritional status by analyzing its cummulative frequency distribution in the hair and whole blood. Journal of Trace Elements in Medicine and Biology, 45, 50-56. Article
Price, C. T., Langford, J. R., & Liporace, F. A. (2012). Essential nutrients for bone health and a review of their availability in the average North American diet. The open orthopaedics journal, 6, 143. Article
Rico, H. (1991). Minerals and osteoporosis. Osteoporosis International, 2(1), 20-25. Review
Scorei, R., Mitrut, P., Petrisor, I., & Scorei, I. (2011). A double-blind, placebo-controlled pilot study to evaluate the effect of calcium fructoborate on systemic inflammation and dyslipidemia markers for middle-aged people with primary osteoarthritis. Biological trace element research, 144(1-3), 253-263. Article
Travers, R. L., Rennie, G. C., & Newnham, R. E. (1990). Boron and arthritis: the results of a double-blind pilot study. Journal of Nutritional Medicine, 1(2), 127-132. Abstract
Volpe, S. L., Taper, L. J., & Meacham, S. (1993). The relationship between boron and magnesium status and bone mineral density in the human: a review. Magnesium research, 6(3), 291-296. Abstract
Zhang, J. (2018). Meta-analysis of serum C-reactive protein and cartilage oligomeric matrix protein levels as biomarkers for clinical knee osteoarthritis. BMC musculoskeletal disorders, 19(1), 22. Article
Brain, Heart, Lung & Breast Health
Altinoz, M. A., Topcu, G., & Elmaci, İ. (2019). Boron’s neurophysiological effects and tumoricidal activity on glioblastoma cells with implications for clinical treatment. International Journal of Neuroscience, 1-15. Article
Bakirdere, S., Orenay, S., & Korkmaz, M. (2010). Effect of boron on human health. The Open Mineral Processing Journal, 3(1). Article
Cui, Y., Winton, M. I., Zhang, Z. F., Rainey, C., Marshall, J., De Kernion, J. B., & Eckhert, C. D. (2004). Dietary boron intake and prostate cancer risk. Oncology reports, 11(4), 887-892. Article
Donoiu, I., Militaru, C., Obleagă, O., Hunter, J. M., Neamţu, J., Biţă, A., ... & Rogoveanu, O. C. (2018).Effects of Boron-Containing Compounds on Cardiovascular Disease Risk Factors–A Review. Journal of Trace Elements in Medicine and Biology. Article
Gaby, A. R., & Wright, J. V. (1990). Nutrients and osteoporosis. Journal of Nutritional Medicine, 1(1), 63-72. Article
Kuru, R., Yilmaz, S., Balan, G., Tuzuner, B. A., Tasli, P. N., Akyuz, S., ... & Sahin, F. (2019). Boron-rich diet may regulate blood lipid profile and prevent obesity: A non-drug and self-controlled clinical trial. Journal of Trace Elements in Medicine and Biology, 54, 191-198. Abstract
Penland, J. G. (1994). Dietary boron, brain function, and cognitive performance. Environmental health perspectives, 102(suppl 7), 65-72. Article
Ozdemir, H., Yaren, B., & Oto, G. (2019). Effect of dietary boron on learning and behavior in rats administered with boric acid. Cell Mol Biol (Noisy le Grand), 65(1). Article
Scorei, I. R. (2011). Calcium fructoborate: plant-based dietary boron as potential medicine for cancer therapy. Front Biosci (Schol Ed), 3, 205-215. Article
Scorei, R., Ciubar, R., Ciofrangeanu, C. M., Mitran, V., Cimpean, A., & Iordachescu, D. (2008). Comparative effects of boric acid and calcium fructoborate on breast cancer cells. Biological trace element research, 122(3), 197-205. Abstract
Simsek, F., Inan, S., & Korkmaz, M. (2019). An in Vitro Study in Which New Boron Derivatives Maybe an Option for Breast Cancer Treatment. breast cancer, 13, 14. Article
Vijay Bhasker, T., Gowda, N. K. S., Krishnamoorthy, P., Pal, D. T., Sejian, V., Awachat, V. B., & Verma, A. K. (2017). Boron supplementation provides hepato-protective effect and improves performance in Wistar rats fed calcium deficit diet. Indian J Anim Sci, 87(10), 1213-1218. Article
Anti-inflammatory & Longevity
Acaroz, U., Ince, S., Arslan-Acaroz, D., Gurler, Z., Kucukkurt, I., Demirel, H. H., ... & Zhu, K. (2018). The ameliorative effects of boron against acrylamide-induced oxidative stress, inflammatory response, and metabolic changes in rats. Food and chemical toxicology, 118, 745-752. Abstract
Nielsen, F. H. (2018). Boron in Aging and Longevity. In Trace Elements and Minerals in Health and Longevity (pp. 163-177). Springer, Cham. Abstract
Scorei, R. I., & Rotaru, P. (2011). Calcium fructoborate—potential anti-inflammatory agent. Biological trace element research, 143(3), 1223-1238. Article
Scorei, R. I., Ciofrangeanu, C., Ion, R., Cimpean, A., Galateanu, B., Mitran, V., & Iordachescu, D. (2010). In vitro effects of calcium fructoborate upon poduction of inflammatory mediators by LPS-stimulated RAW 264.7 macrophages. Biological trace element research, 135(1-3), 334-344. Article
Scorei, R., Ciubar, R., Iancu, C., Mitran, V., Cimpean, A., & Iordachescu, D. (2007). In vitro effects of calcium fructoborate on fMLP-stimulated human neutrophil granulocytes. Biological trace element research, 118(1), 27-37. Article
Scorei, R., Cimpoiasu, V. M., & Iordachescu, D. (2005). In vitro evaluation of the antioxidant activity of calcium fructoborate. Biological trace element research, 107(2), 127-134. Abstract
Boron and Polyphenols: Fructo Borate in No 7 Systemic Booster (or with High ORAC)
Arjmandi, B. H., Johnson, C. D., Campbell, S. C., Hooshmand, S., Chai, S. C., & Akhter, M. P. (2010). Combining fructooligosaccharide and dried plum has the greatest effect on restoring bone mineral density among select functional foods and bioactive compounds. Journal of medicinal food, 13(2), 312-319. Abstract [High ORAC]
Austermann, K., Baecker, N., Stehle, P., & Heer, M. (2019). Putative Effects of Nutritive Polyphenols on Bone Metabolism In Vivo—Evidence from Human Studies. Nutrients, 11(4), 871. Article
Basu, S., Michaëlsson, K., Olofsson, H., Johansson, S., & Melhus, H. (2001). Association between oxidative stress and bone mineral density. Biochemical and biophysical research communications, 288(1), 275-279. Abstract
Brondani, J. E., Comim, F. V., Flores, L. M., Martini, L. A., & Premaor, M. O. (2019). Fruit and vegetable intake and bones: A systematic review and meta-analysis. PloS one, 14(5), e0217223. Article
Domazetovic, V., Marcucci, G., Pierucci, F., Bruno, G., Di Cesare Mannelli, L., Ghelardini, C., ... & Vincenzini, M. T. (2019). Blueberry juice protects osteocytes and bone precursor cells against oxidative stress partly through SIRT 1. FEBS open bio. Article
Garrett, I. R., Boyce, B. F., Oreffo, R. O., Bonewald, L., Poser, J., & Mundy, G. R. (1990). Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. The Journal of clinical investigation, 85(3), 632-639. Article
Hardcastle, A. C., Aucott, L., Reid, D. M., & Macdonald, H. M. (2011). Associations between dietary flavonoid intakes and bone health in a Scottish population. Journal of Bone and Mineral Research, 26(5), 941-947. Article
Hubert, P., Lee, S., Lee, S. K., & Chun, O. (2014). Dietary polyphenols, berries, and age-related bone loss: A review based on human, animal, and cell studies. Antioxidants, 3(1), 144-158. Article
Koch, W. (2019). Dietary Polyphenols—Important Non-Nutrients in the Prevention of Chronic Noncommunicable Diseases. A Systematic Review. Nutrients, 11(5), 1039. Article
Lobene, A. J., McCabe, L. D., Stone, M. S., Kindler, J. M., Bailey, R. L., Moshfegh, A. J., ... & Weaver, C. M. (2019). Dietary Mineral Intake Ratios and Bone Health in Adults. In Nutritional Influences on Bone Health (pp. 53-67). Springer, Cham. Abstract
New, S. A., Robins, S. P., Campbell, M. K., Martin, J. C., Garton, M. J., Bolton-Smith, C., ... & Reid, D. M. (2000). Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health?. The American journal of clinical nutrition, 71(1), 142-151. Article
Welch, A., MacGregor, A., Jennings, A., Fairweather‐Tait, S., Spector, T., & Cassidy, A. (2012). Habitual flavonoid intakes are positively associated with bone mineral density in women. Journal of Bone and Mineral Research, 27(9), 1872-1878. Article
Welch, A. A., & Hardcastle, A. C. (2014). The effects of flavonoids on bone. Current osteoporosis reports, 12(2), 205-210. Abstract
Welch, A., MacGregor, A., Jennings, A., Fairweather‐Tait, S., Spector, T., & Cassidy, A. (2012). Habitual flavonoid intakes are positively associated with bone mineral density in women. Journal of Bone and Mineral Research, 27(9), 1872-1878. Article
Weitzmann, M. N. (2013). The role of inflammatory cytokines, the RANKL/OPG axis, and the immunoskeletal interface in physiological bone turnover and osteoporosis. Scientifica, 2013. Article
Yahia, E. M., García-Solís, P., & Celis, M. E. M. (2019). Contribution of Fruits and Vegetables to Human Nutrition and Health. In Postharvest Physiology and Biochemistry of Fruits and Vegetables (pp. 19-45). Woodhead Publishing. Abstract
Zhang, Z. Q., He, L. P., Liu, Y. H., Liu, J., Su, Y. X., & Chen, Y. M. (2014). Association between dietary intake of flavonoid and bone mineral density in middle aged and elderly Chinese women and men. Osteoporosis International, 25(10), 2417-2425. Abstract
One capsule contains:
Vitamin C (from Calcium Ascorbate) 234mg 400%DV
Calcium (from Calcium Ascorbate) 26mg 3%DV
Fructo Borate Complex (yields 6mg elemental Boron) 240mg
Other Ingredients: Cellulose &water (capsule shell).
FRUCTO BORATE — The Fructo Borate is designed to reduce osteoarthritis’ joint pain and swelling, and increase joint mobility.*
Anti-inflammation and reduction of joint pain: Clinical trials suggest 1-2 capsules twice a day.*
Bone health: Fructo Borate helps to re-mineralize and strengthen bones, increases absorption of vitamin D, calcium, and magnesium. Take 1-2 caps a day.*
Heart health: Boron is shown to lower C-reactive proteins (marker for cardiovascular disease). Take 1-2 caps a day.*
Lung & immune support: Take 1-2 caps a day as anti-inflammatory for lung congestion (can take up to 6 a day for 2 days, reduce to 2-4 caps a day). Take 1-2 caps at the onset of a cold or flu.*
Our favorite: The master mineral, boron, in the Fructo Borate is in command of so many functions in the body. We add it to many of our protocols to enhance healing. Since Frcuto Borate mimics the boron in foods, it is exceptionally available.*
Description
New form of boron supplementation that is the exact molecular structure of dietary boron found in fruits, vegetables and nuts. US Patent #US 5962049 A. Fructo Borate 240 mg with calcium ascorbate 260 mg provides 6 mg of elemental boron. No excipients. 60 capsules per bottle. 500 mg per vegetarian capsule.
- Patented Technology creates a highly effective Fructo Borate molecule.
- 240mg fructoborate and 260mg calcium ascorbate per vegetarian capsule.
- Each capsule supplies 6mg of elemental boron.
- New form of boron supplementation: US patented carbohydrate bound boron.
- Exact duplicate of dietary boron found in fruits, vegetables and nuts.
- Association Constant high: Receptor sites receive entire molecule.
- Osteoporosis: Reduces excretion of Mg and Ca, re-mineralizes bone.
- Use therapeutically against osteoarthritis: Reduces pain and swelling and increases mobility.
- Down-regulates immune system: Reduces over-reactive neutrophil levels.
- Anti-oxidant: Increases SOD and Catalase production.
- Anti-aging: Increases Vitamin D and Steroid hormone levels in the blood.
- Anti-cancer: Reduces PSA marker for prostate cancer.
- Clinical trial: 1 to 2 capsules BID to reduce pain and regenerate bone; 1 capsule daily for maintenance. Observed results period is from 2-8 weeks.
- No filler, flowing agents or excipients of any kind.
Research
FOOD SCIENCE: THE APPLICATION AND USE OF Fructo Borate [plant-based Dietary boron].*
Arthritis and Osteoporosis: Bone and Joint Health
Baldivia, A. S. (2016). 10. Will boron be essential for human nutrition?. Archivos Latinoamericanos de Nutrición, 66(1). Article
Bartl, R., & Bartl, C. (2019). A Step-by-Step Programme for Healthy Bones. In The Osteoporosis Manual (pp. 137-150). Springer, Cham. Abstract
Beattie, J. H., & Peace, H. S. (1993). The influence of a low-boron diet and boron supplementation on bone, major mineral and sex steroid metabolism in postmenopausal women. British journal of nutrition, 69(3), 871-884. Article
Boyacioglu, O., Orenay-Boyacioglu, S., Yildirim, H., & Korkmaz, M. (2018). Boron intake, osteocalcin polymorphism and serum level in postmenopausal osteoporosis. Journal of Trace Elements in Medicine and Biology, 48, 52-56. Abstract
Bunker, V. W. (1994). The role of nutrition in osteoporosis. British journal of biomedical science, 51(3), 228-240. Abstract
Devirian, T. A., & Volpe, S. L. (2003). The physiological effects of dietary boron. Article
Gaby, A. R. (1999). Natural treatments for osteoarthritis. Alternative Medicine Review, 4, 330-341. Article
Goldstein, M. C., & Goldstein, M. A. (2018). Vitamins and Minerals: Fact Versus Fiction. ABC-CLIO. BookP.4-5
Helliwell, T. R., Kelly, S. A., Walsh, H. P. J., Klenerman, L., Haines, J., Clark, R., & Roberts, N. B. (1996). Elemental analysis of femoral bone from patients with fractured neck of femur or osteoarthrosis. Bone, 18(2), 151-157. Abstract
Hunter, J. M., Nemzer, B. V., Rangavajla, N., Biţă, A., Rogoveanu, O. C., Neamţu, J., ... & Mogoşanu, G. D. (2019). The Fructoborates: Part of a Family of Naturally Occurring Sugar–Borate Complexes—Biochemistry, Physiology, and Impact on Human Health: a Review. Biological trace element research, 188(1), 11-25. Article
Jain, R., & Tiwari, A. (2019). Boron: A dietary mineral for human health. Apollo Medicine, 16(1), 66. Article
Khaliq, H., Juming, Z., & Ke-Mei, P. (2018). The physiological role of boron on health. Biological trace element research, 186(1), 31-51. Article
Lewiecki, E. M., Bilezikian, J. P., Carey, J. J., Dell, R. M., Gordon, C. M., Harris, S. T., ... & Rosenblatt, M. (2018). Proceedings of the 2017 Santa Fe Bone Symposium: insights and emerging concepts in the management of osteoporosis. Journal of Clinical Densitometry, 21(1), 3-21. Article
Lu, X., Li, K., Xie, Y., Qi, S., Shen, Q., Yu, J., ... & Zheng, X. (2019). Improved osteogenesis of boron incorporated calcium silicate coatings via immunomodulatory effects. Journal of Biomedical Materials Research Part A, 107(1), 12-24. Article
McCoy, H., Kenney, M. A., Montgomery, C., Irwin, A., Williams, L., & Orrell, R. (1994). Relation of boron to the composition and mechanical properties of bone. Environmental Health Perspectives, 102(suppl 7), 49-53. Article
Maslin, K., & Dennison, E. (2019). Diet and Bone Health. In Analysis in Nutrition Research (pp. 337-354). Academic Press. Chapter13
Meacham, S. L., Taper, L. J., & Volpe, S. L. (1994). Effects of boron supplementation on bone mineral density and dietary, blood, and urinary calcium, phosphorus, magnesium, and boron in female athletes. Environmental health perspectives, 102(suppl 7), 79-82. Article
Miljkovic, D., Scorei, R. I., Cimpoiaşu, V. M., & Scorei, I. D. (2009). Calcium fructoborate: plant-based dietary boron for human nutrition. Journal of dietary supplements, 6(3), 211-226. Article
Moustafa, S. R. (2019). Relationship of some ultra trace elements with atherosclerosis. Zanco Journal of Medical Sciences (Zanco J Med Sci), 23(1), 66-73. Article
Morelli, V., Naquin, C., & Weaver, V. (2003). Alternative therapies for traditional disease states: osteoarthritis. American Family Physician, 67(2), 339-346. Article
Newnham, R. E. (2002). How boron is being used in medical practice. In Boron in plant and animal nutrition (pp. 59-62). Springer, Boston, MA. Abstract
Newnham, R.E. (1994). Essentiality of boron for health bones and joints. Environmental health perspective, 102 (suppl 7), 83-85. Article
Nielsen, F. H. (2014). Update on human health effects of boron. Journal of Trace Elements in Medicine and Biology, 28(4), 383-387. Abstract
Nielsen, F. H. (2008). Is boron nutritionally relevant?. Nutrition reviews, 66(4), 183-191. Article
Nielsen, F. H. (1990). Studies on the relationship between boron and magnesium which possibly affects the formation and maintenance of bones [electronic resource]. Magnesium and trace elements, 9(2), 61. Article
Nielsen, F. H., Hunt, C. D., Mullen, L. M., & Hunt, J. R. (1987). Effect of dietary boron on mineral, estrogen, and testosterone metabolism in postmenopausal women. The FASEB journal, 1(5), 394-397. Article
Pietrzkowski, Z., Mercado-Sesma, A. R., Argumedo, R., Cervantes, M., Nemzer, B., & Reyes-Izquierdo, T. (2018). Effects of once-daily versus twice daily dosing of calcium fructoborate on knee discomfort. A 90 day, double-blind, placebo controlled randomized clinical study. J Aging Res Clin Pract, 7(1), 31-36. Article
Pizzorno, L. (2015). Nothing boring about boron. Integrative Medicine: A Clinician's Journal, 14(4), 35. Article
Prejac, J., Skalny, A. A., Grabeklis, A. R., Uzun, S., Mimica, N., & Momčilović, B. (2018). Assessing the boron nutritional status by analyzing its cummulative frequency distribution in the hair and whole blood. Journal of Trace Elements in Medicine and Biology, 45, 50-56. Article
Price, C. T., Langford, J. R., & Liporace, F. A. (2012). Essential nutrients for bone health and a review of their availability in the average North American diet. The open orthopaedics journal, 6, 143. Article
Rico, H. (1991). Minerals and osteoporosis. Osteoporosis International, 2(1), 20-25. Review
Scorei, R., Mitrut, P., Petrisor, I., & Scorei, I. (2011). A double-blind, placebo-controlled pilot study to evaluate the effect of calcium fructoborate on systemic inflammation and dyslipidemia markers for middle-aged people with primary osteoarthritis. Biological trace element research, 144(1-3), 253-263. Article
Travers, R. L., Rennie, G. C., & Newnham, R. E. (1990). Boron and arthritis: the results of a double-blind pilot study. Journal of Nutritional Medicine, 1(2), 127-132. Abstract
Volpe, S. L., Taper, L. J., & Meacham, S. (1993). The relationship between boron and magnesium status and bone mineral density in the human: a review. Magnesium research, 6(3), 291-296. Abstract
Zhang, J. (2018). Meta-analysis of serum C-reactive protein and cartilage oligomeric matrix protein levels as biomarkers for clinical knee osteoarthritis. BMC musculoskeletal disorders, 19(1), 22. Article
Brain, Heart, Lung & Breast Health
Altinoz, M. A., Topcu, G., & Elmaci, İ. (2019). Boron’s neurophysiological effects and tumoricidal activity on glioblastoma cells with implications for clinical treatment. International Journal of Neuroscience, 1-15. Article
Bakirdere, S., Orenay, S., & Korkmaz, M. (2010). Effect of boron on human health. The Open Mineral Processing Journal, 3(1). Article
Cui, Y., Winton, M. I., Zhang, Z. F., Rainey, C., Marshall, J., De Kernion, J. B., & Eckhert, C. D. (2004). Dietary boron intake and prostate cancer risk. Oncology reports, 11(4), 887-892. Article
Donoiu, I., Militaru, C., Obleagă, O., Hunter, J. M., Neamţu, J., Biţă, A., ... & Rogoveanu, O. C. (2018).Effects of Boron-Containing Compounds on Cardiovascular Disease Risk Factors–A Review. Journal of Trace Elements in Medicine and Biology. Article
Gaby, A. R., & Wright, J. V. (1990). Nutrients and osteoporosis. Journal of Nutritional Medicine, 1(1), 63-72. Article
Kuru, R., Yilmaz, S., Balan, G., Tuzuner, B. A., Tasli, P. N., Akyuz, S., ... & Sahin, F. (2019). Boron-rich diet may regulate blood lipid profile and prevent obesity: A non-drug and self-controlled clinical trial. Journal of Trace Elements in Medicine and Biology, 54, 191-198. Abstract
Penland, J. G. (1994). Dietary boron, brain function, and cognitive performance. Environmental health perspectives, 102(suppl 7), 65-72. Article
Ozdemir, H., Yaren, B., & Oto, G. (2019). Effect of dietary boron on learning and behavior in rats administered with boric acid. Cell Mol Biol (Noisy le Grand), 65(1). Article
Scorei, I. R. (2011). Calcium fructoborate: plant-based dietary boron as potential medicine for cancer therapy. Front Biosci (Schol Ed), 3, 205-215. Article
Scorei, R., Ciubar, R., Ciofrangeanu, C. M., Mitran, V., Cimpean, A., & Iordachescu, D. (2008). Comparative effects of boric acid and calcium fructoborate on breast cancer cells. Biological trace element research, 122(3), 197-205. Abstract
Simsek, F., Inan, S., & Korkmaz, M. (2019). An in Vitro Study in Which New Boron Derivatives Maybe an Option for Breast Cancer Treatment. breast cancer, 13, 14. Article
Vijay Bhasker, T., Gowda, N. K. S., Krishnamoorthy, P., Pal, D. T., Sejian, V., Awachat, V. B., & Verma, A. K. (2017). Boron supplementation provides hepato-protective effect and improves performance in Wistar rats fed calcium deficit diet. Indian J Anim Sci, 87(10), 1213-1218. Article
Anti-inflammatory & Longevity
Acaroz, U., Ince, S., Arslan-Acaroz, D., Gurler, Z., Kucukkurt, I., Demirel, H. H., ... & Zhu, K. (2018). The ameliorative effects of boron against acrylamide-induced oxidative stress, inflammatory response, and metabolic changes in rats. Food and chemical toxicology, 118, 745-752. Abstract
Nielsen, F. H. (2018). Boron in Aging and Longevity. In Trace Elements and Minerals in Health and Longevity (pp. 163-177). Springer, Cham. Abstract
Scorei, R. I., & Rotaru, P. (2011). Calcium fructoborate—potential anti-inflammatory agent. Biological trace element research, 143(3), 1223-1238. Article
Scorei, R. I., Ciofrangeanu, C., Ion, R., Cimpean, A., Galateanu, B., Mitran, V., & Iordachescu, D. (2010). In vitro effects of calcium fructoborate upon poduction of inflammatory mediators by LPS-stimulated RAW 264.7 macrophages. Biological trace element research, 135(1-3), 334-344. Article
Scorei, R., Ciubar, R., Iancu, C., Mitran, V., Cimpean, A., & Iordachescu, D. (2007). In vitro effects of calcium fructoborate on fMLP-stimulated human neutrophil granulocytes. Biological trace element research, 118(1), 27-37. Article
Scorei, R., Cimpoiasu, V. M., & Iordachescu, D. (2005). In vitro evaluation of the antioxidant activity of calcium fructoborate. Biological trace element research, 107(2), 127-134. Abstract
Boron and Polyphenols: Fructo Borate in No 7 Systemic Booster (or with High ORAC)
Arjmandi, B. H., Johnson, C. D., Campbell, S. C., Hooshmand, S., Chai, S. C., & Akhter, M. P. (2010). Combining fructooligosaccharide and dried plum has the greatest effect on restoring bone mineral density among select functional foods and bioactive compounds. Journal of medicinal food, 13(2), 312-319. Abstract [High ORAC]
Austermann, K., Baecker, N., Stehle, P., & Heer, M. (2019). Putative Effects of Nutritive Polyphenols on Bone Metabolism In Vivo—Evidence from Human Studies. Nutrients, 11(4), 871. Article
Basu, S., Michaëlsson, K., Olofsson, H., Johansson, S., & Melhus, H. (2001). Association between oxidative stress and bone mineral density. Biochemical and biophysical research communications, 288(1), 275-279. Abstract
Brondani, J. E., Comim, F. V., Flores, L. M., Martini, L. A., & Premaor, M. O. (2019). Fruit and vegetable intake and bones: A systematic review and meta-analysis. PloS one, 14(5), e0217223. Article
Domazetovic, V., Marcucci, G., Pierucci, F., Bruno, G., Di Cesare Mannelli, L., Ghelardini, C., ... & Vincenzini, M. T. (2019). Blueberry juice protects osteocytes and bone precursor cells against oxidative stress partly through SIRT 1. FEBS open bio. Article
Garrett, I. R., Boyce, B. F., Oreffo, R. O., Bonewald, L., Poser, J., & Mundy, G. R. (1990). Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. The Journal of clinical investigation, 85(3), 632-639. Article
Hardcastle, A. C., Aucott, L., Reid, D. M., & Macdonald, H. M. (2011). Associations between dietary flavonoid intakes and bone health in a Scottish population. Journal of Bone and Mineral Research, 26(5), 941-947. Article
Hubert, P., Lee, S., Lee, S. K., & Chun, O. (2014). Dietary polyphenols, berries, and age-related bone loss: A review based on human, animal, and cell studies. Antioxidants, 3(1), 144-158. Article
Koch, W. (2019). Dietary Polyphenols—Important Non-Nutrients in the Prevention of Chronic Noncommunicable Diseases. A Systematic Review. Nutrients, 11(5), 1039. Article
Lobene, A. J., McCabe, L. D., Stone, M. S., Kindler, J. M., Bailey, R. L., Moshfegh, A. J., ... & Weaver, C. M. (2019). Dietary Mineral Intake Ratios and Bone Health in Adults. In Nutritional Influences on Bone Health (pp. 53-67). Springer, Cham. Abstract
New, S. A., Robins, S. P., Campbell, M. K., Martin, J. C., Garton, M. J., Bolton-Smith, C., ... & Reid, D. M. (2000). Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health?. The American journal of clinical nutrition, 71(1), 142-151. Article
Welch, A., MacGregor, A., Jennings, A., Fairweather‐Tait, S., Spector, T., & Cassidy, A. (2012). Habitual flavonoid intakes are positively associated with bone mineral density in women. Journal of Bone and Mineral Research, 27(9), 1872-1878. Article
Welch, A. A., & Hardcastle, A. C. (2014). The effects of flavonoids on bone. Current osteoporosis reports, 12(2), 205-210. Abstract
Welch, A., MacGregor, A., Jennings, A., Fairweather‐Tait, S., Spector, T., & Cassidy, A. (2012). Habitual flavonoid intakes are positively associated with bone mineral density in women. Journal of Bone and Mineral Research, 27(9), 1872-1878. Article
Weitzmann, M. N. (2013). The role of inflammatory cytokines, the RANKL/OPG axis, and the immunoskeletal interface in physiological bone turnover and osteoporosis. Scientifica, 2013. Article
Yahia, E. M., García-Solís, P., & Celis, M. E. M. (2019). Contribution of Fruits and Vegetables to Human Nutrition and Health. In Postharvest Physiology and Biochemistry of Fruits and Vegetables (pp. 19-45). Woodhead Publishing. Abstract
Zhang, Z. Q., He, L. P., Liu, Y. H., Liu, J., Su, Y. X., & Chen, Y. M. (2014). Association between dietary intake of flavonoid and bone mineral density in middle aged and elderly Chinese women and men. Osteoporosis International, 25(10), 2417-2425. Abstract
Ingredients
One capsule contains:
Vitamin C (from Calcium Ascorbate) 234mg 400%DV
Calcium (from Calcium Ascorbate) 26mg 3%DV
Fructo Borate Complex (yields 6mg elemental Boron) 240mg
Other Ingredients: Cellulose &water (capsule shell).
Protocol
FRUCTO BORATE — The Fructo Borate is designed to reduce osteoarthritis’ joint pain and swelling, and increase joint mobility.*
Anti-inflammation and reduction of joint pain: Clinical trials suggest 1-2 capsules twice a day.*
Bone health: Fructo Borate helps to re-mineralize and strengthen bones, increases absorption of vitamin D, calcium, and magnesium. Take 1-2 caps a day.*
Heart health: Boron is shown to lower C-reactive proteins (marker for cardiovascular disease). Take 1-2 caps a day.*
Lung & immune support: Take 1-2 caps a day as anti-inflammatory for lung congestion (can take up to 6 a day for 2 days, reduce to 2-4 caps a day). Take 1-2 caps at the onset of a cold or flu.*
Our favorite: The master mineral, boron, in the Fructo Borate is in command of so many functions in the body. We add it to many of our protocols to enhance healing. Since Frcuto Borate mimics the boron in foods, it is exceptionally available.*