High ORAC Synbiotic
The High ORAC Synbiotic formula is renowned as a comprehensive post-antibiotic care.*
Antibiotics manage a variety of infections, but in the process, antibiotics change the balance of the microbiota community in the GI tract, which can cause yeast and fungal overgrowth, and allow a host of other pathogenic organisms to flourish. Constipation, diarrhea, yeast infections, bloating, itching and burning are just some of the uncomfortable effects.
The High ORAC Synbiotic offers a perfect combination of our Super Blend of naturally occurring whole probiotics with a rich complex of concentrated plant polyphenols that serve as a potent post-antibiotic care with anti-microbial, anti-oxidant, as well as exquisite anti-inflammatory and calming properties.
ORAC: 40,000ppm of Total ORAC (Oxygen Radical Absorbent Capacity), the highest on the market. Super Blend Probiotic: 30 billions CFU per gram of our pedigreed probiotics with their Supernatant metabolites and ORNs (microRNAs).*
The Research tab below presents a small fraction of the science. For further reading, see also the research tab of the No 7 Booster.
The High ORAC Synbiotic is Vegan, Kosher, Non GMO, and Gluten Free.
- Description
- Research
- Ingredients
-
Protocol
Probiotic- Certified strains of Bifidobacterium longum, Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus bulgaricus and Streptococcus thermophilus (30 billion CFU per gram); Prebiotic- Inulin from chicory Root; Supernatant- probiotic metabolites, and ORNs (Oligoribonucleotides. Also called MicroRNAs); Phytonutrients- Grape Seed Extract, Wild Blueberry, Quercetin, Resveratrol, Wild Bilberry, Cranberry, Tart Cherry, Prune, Raspberry Seed, Strawberry (Total ORAC assay 40,000 per capsule)
Advanced freeze-drying technology with 60 caps/bottle. 500 mg/ cap.
No excipients.
- Combination of Green Technology for highest phytonutrient potential and Microbiome Technology for pure cultures of pedigreed strains of standardized referenced material with Original molecular identity confirmed routinely by DNA sequencing.
- Berry extracts and Fruit- 250mg of pure freeze dried Wild Blueberry, Grape Seed Extract, Raspberry Seed, Wild Bilberry, Cranberry, Tart Cherry, Prune, Strawberry, Quercetin, and Resveratrol.
- 250mg of inulin from chicory fiber.
- 30 billion of the Super Blend of certified strains of Bifidobacterium longum, Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus bulgaricus and Streptococcus thermophilus.
- The High ORAC Synbiotic is designed for calming and rejuvenating inflammatory conditions in the GI tract. In particular, it was formulated to offer a perfect first step after antibiotic therapy.
- A new generation Synbiotic formula: The selected probiotic organisms are shown in research to be excellent colonizers of the GI Tract. They inhibit pathogens, strengthen the mucus membrane, protect from yeast and other pathogens, and create a balanced environment that bolster the health of the microbiome (GI Tract). Phenols are shown in research to have powerful anti-microbial and anti-inflammatory properties. With the extensive variety of our potent berries and fruit concentrates, the formula is brought up to a new level of regenerating the GI Tract. Their phenolic profile and fibers work synergistically with probiotic organisms to form the next generation of symbiotic formulas. The High ORAC can be utilized as a comprehensive post antibiotic care, and as a daily booster.
- The extensive variety of berries, fruits, and fiber from organic chicory root aligns with the recommended anti-oxidant score of 9-12 fruits and vegetables, with the phytonutrients and high ORAC values.
- Potent antioxidant with Total ORAC of 40,000 units per capsule (as compared to: 5-9 fruits and vegetables a day provide 1800 to 2500 ORAC units).
- Super Blend Probiotics with their supernatant and microRNA selected to protect, counteract and neutralize dietary toxins, mutagens, carcinogens and infectious organisms.
- Detoxifies dietary mycotoxins, enterotoxins, exotoxins and carcinogens.
- Reduces inflammation systemically and throughout the gastrointestinal system: Original strains in conjunction with Wild Blueberry, Wild Bilberry, Grape Seed Extract, Raspberry Seed Extract, Tart Cherry, Prune Quercetin, Resveratrol,.
- Preservation of stem cells.
- Cardiovascular health
- Regeneration of the enteric nervous system: Wild Blueberry, Wild Bilberry.
- Broad spectrum antimicrobial: Original strains in conjunction with Raspberry Seed extract, Wild Blueberry Extract, Grape Seed extract, Cranberry.
- Vision: Wild Blueberry, Wild Bilberry extt
- No fillers, flowing agents or excipients of any kind.
- Read monograph in the web library.
FOOD SCIENCE: THE APPLICATION AND USE OF:
PROBIOTIC SUPER BLEND: L. ACIDOPHILUS, B. LONGUM, L. CASEI, L. BULGARICUS, AND STREPTOCOCCUS THERMOPHILUS, SUPERNATANT, AND ORNS (MICRORNA). 30 BILLON CFU.
PHYTONUTRIENTS: GRAPE SEED EXTRACT, WILD BLUEBERRY, QUERCETIN, RESVERATROL, WILD BILBERRY, CRANBERRY, TART CHERRY, PRUNE, RASPBERRY SEED, STRAWBERRY, AND INULIN FROM CHICORY ROOT.*
HIGH ACTIVE POLYPHENOL: TOTAL ORAC 40,000PPM.
Post Antibiotic Care
Aguilar, C., Mano, M., & Eulalio, A. (2018). MicroRNAs at the Host–Bacteria Interface: Host Defense or Bacterial Offense. Trends in microbiology. Abstrac
Albarracin, L., Kobayashi, H., Iida, H., Sato, N., Nochi, T., Aso, H., ... & Villena, J. (2017). Transcriptomic analysis of the innate antiviral immune response in porcine intestinal epithelial cells: influence of immunobiotic lactobacilli. Frontiers in immunology, 8, 57. Article
Alvarez-Sieiro, P., Montalbán-López, M., Mu, D., & Kuipers, O. P. (2016). Bacteriocins of lactic acid bacteria: extending the family. Applied microbiology and biotechnology, 100(7), 2939-2951. Abstract
Amalaradjou, M. A. R., & Bhunia, A. K. (2012). Modern approaches in probiotics research to control foodborne pathogens. In Advances in food and nutrition research (Vol. 67, pp. 185-239). Academic Press. Abstract
Anzaku, A. A., & Pedro, A. (2017). Antimicrobial Effect of Probiotic Lactobacilli on Candida Spp. Isolated from Oral Thrush of AIDS Defining Ill Patients. J Prob Health, 5(171), 2. Article
Arboleya, S., Watkins, C., Stanton, C., & Ross, R. P. (2016). Gut bifidobacteria populations in human health and aging. Frontiers in microbiology, 7. Article
Arena, M. P., Capozzi, V., Russo, P., Drider, D., Spano, G., & Fiocco, D. (2018). Immunobiosis and probiosis: antimicrobial activity of lactic acid bacteria with a focus on their antiviral and antifungal properties. Applied microbiology and biotechnology, 102(23), 9949-9958. Abstract
Barba-Vidal, E., Castillejos, L., López-Colom, P., Urgell, M. R., Muñoz, J. A. M., & Martín-Orúe, S. M. (2017). Evaluation of the probiotic strain Bifidobacterium longum subsp. infantis CECT 7210 capacities to improve health status and fight digestive pathogens in a piglet model. Frontiers in microbiology, 8. Article
Barba-Vidal, E., Castillejos, L., Roll, V. F., Cifuentes-Orjuela, G., Moreno Muñoz, J. A., & Martín-Orúe, S. M. (2017). The Probiotic Combination of Bifidobacterium longum subsp. infantis CECT 7210 and Bifidobacterium animalis subsp. lactis BPL6 Reduces Pathogen Loads and Improves Gut Health of Weaned Piglets Orally Challenged with Salmonella Typhimurium. Frontiers in Microbiology, 8, 1570. Article
Bhat, M. I., Kumari, A., Kapila, S., & Kapila, R. (2019). Probiotic lactobacilli mediated changes in global epigenetic signatures of human intestinal epithelial cells during Escherichia coli challenge. Annals of Microbiology, 1-10. Abstract
Bhat, M. I., & Kapila, R. (2017). Dietary metabolites derived from gut microbiota: critical modulators of epigenetic changes in mammals. Nutrition reviews, 75(5), 374-389. Abstract
Barker, A., Duster, M., Valentine, S., Archbald-Pannone, L., Guerrant, R., & Safdar, N. (2015). Probiotics for Clostridium difficile infection in adults (PICO): Study protocol for a double-blind, randomized controlled trial. Contemporary clinical trials, 44, 26-32. Article
Blaabjerg, S., Artzi, D. M., & Aabenhus, R. (2017). Probiotics for the Prevention of Antibiotic-Associated Diarrhea in Outpatients—A Systematic Review and Meta-Analysis. Antibiotics, 6(4), 21. Article
Blackwood, B. P., Yuan, C. Y., Wood, D. R., Nicolas, J. D., Grothaus, J. S., & Hunter, C. J. (2017). Probiotic Lactobacillus Species Strengthen Intestinal Barrier Function and Tight Junction Integrity in Experimental Necrotizing Enterocolitis. Journal of probiotics & health, 5(1). Article
Bron, P. A., Kleerebezem, M., Brummer, R. J., Cani, P. D., Mercenier, A., MacDonald, T. T., ... & Wells, J. M. (2017). Can probiotics modulate human disease by impacting intestinal barrier function?. British Journal of Nutrition, 117(1), 93-107. Article
Cani, P.D., Delzenne, N.M. (2011).The gut microbiome as therapeutic target. Pharmacol Ther, 130(2), 202-12.Abstract
Cavanagh, H. M., Hipwell, M., & Wilkinson, J. M. (2003). Antibacterial activity of berry fruits used for culinary purposes. Journal of medicinal food, 6(1), 57-61. Abstract
Cribby, S., Taylor, M., & Reid, G. (2009). Vaginal microbiota and the use of probiotics. Interdisciplinary perspectives on infectious diseases, 2008: 256490. Article
Druart, C., Alligier, M., Salazar, N., Neyrinck, A.M., Delzenne, N.M. (2014).Modulation of the gut microbiota by nutrients with prebiotic and probiotic properties. Adv Nutr, 5(5):624S-633S. Article
Goldenberg, J. Z., Yap, C., Lytvyn, L., Lo, C. K. F., Beardsley, J., Mertz, D., & Johnston, B. C. (2017). Probiotics for the prevention of Clostridium difficile‐associated diarrhea in adults and children. The Cochrane Library. Abstract
Goldenberg, J. Z., Lytvyn, L., Steurich, J., Parkin, P., Mahant, S., & Johnston, B. C. (2015). Probiotics for the prevention of pediatric antibiotic‐associated diarrhea. The Cochrane Library. Article
Gong, J., Bai, T., Zhang, L., Qian, W., Song, J., & Hou, X. (2017). Inhibition effect of Bifidobacterium longum, Lactobacillus acidophilus, Streptococcus thermophilus and Enterococcus faecalis and their related products on human colonic smooth muscle in vitro. PloS one, 12(12), e0189257. Article
Hayes, S. R., & Vargas, A. J. (2016). Probiotics for the Prevention of Pediatric Antibiotic-Associated Diarrhea. Explore: The Journal of Science and Healing, 12(6), 463-466. Article
Hempel, S., Newberry, S. J., Maher, A. R., Wang, Z., Miles, J. N., Shanman, R., ... & Shekelle, P. G. (2012). Probiotics for the prevention and treatment of antibiotic-associated diarrhea: a systematic review and meta-analysis. Jama, 307(18), 1959-1969. Article
Holscher, H. D. (2017). Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 8(2), 172-184. Article
Johnston, B. C., Ma, S. S., Goldenberg, J. Z., Thorlund, K., Vandvik, P. O., Loeb, M., & Guyatt, G. H. (2012). Probiotics for the prevention of Clostridium difficile–associated diarrhea: a systematic review and meta-analysis. Annals of internal medicine, 157(12), 878-888. Abstract
Johnston, B. C., Goldenberg, J. Z., Vandvik, P. O., Sun, X., & Guyatt, G. H. (2011). Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst Rev, 11(11). Abstract
Kasubuchi, M., Hasegawa, S., Hiramatsu, T., Ichimura, A., & Kimura, I. (2015). Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients, 7(4), 2839-2849. Article
Kawabata, K., Yoshioka, Y., & Terao, J. (2019). Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules, 24(2), 370. Article
Koh, A., De Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell, 165(6), 1332-1345. Article
Krautkramer, K. A., Kreznar, J. H., Romano, K. A., Vivas, E. I., Barrett-Wilt, G. A., Rabaglia, M. E., ... & Denu, J. M. (2016). Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues. Molecular cell, 64(5), 982-992. Article
Kumar, S., Bansal, A., Chakrabarti, A., & Singhi, S. (2013). Evaluation of efficacy of probiotics in prevention of Candida colonization in a PICU—a randomized controlled trial. Critical care medicine, 41(2), 565-572. Article
Lazar, V., Miyazaki, Y., Hanawa, T., Chifiriuc, M. C., Ditu, L. M., Marutescu, L., ... & Kamiya, S. (2009). The influence of some probiotic supernatants on the growth and virulence features expression of several selected enteroaggregative E. coli clinical strains. Roum Arch Microbiol Immunol, 68(4), 207-214. Article
Lecellier, C. H., Dunoyer, P., Arar, K., Lehmann-Che, J., Eyquem, S., Himber, C., ... & Voinnet, O. (2005). A cellular microRNA mediates antiviral defense in human cells. Science, 308(5721), 557-560. Article
Ling, X., Linglong, P., Weixia, D., & Hong, W. (2016). Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS-Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model. PloS one, 11(8), e0161635. Article
Liévin-Le Moal, V., & Servin, A. L. (2014). Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clinical microbiology reviews, 27(2), 167-199. Article
Maguire, M., & Maguire, G. (2019). Gut dysbiosis, leaky gut, and intestinal epithelial proliferation in neurological disorders: towards the development of a new therapeutic using amino acids, prebiotics, probiotics, and postbiotics. Reviews in the Neurosciences, 30(2), 179-201. Article
Marshall, W.E. (2014). Bacterial ORNs, a new paradigm to prevent infection. In Weston A. Price Foundation, online Article.
McFarland, L. V. (2006). Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. The American journal of gastroenterology, 101(4), 812. Abstract
Mcrorie, J. W., & Fahey, G. C. (2013). A review of gastrointestinal physiology and the mechanisms underlying the health benefits of dietary fiber: matching an effective fiber with specific patient needs. Clinical Nursing Studies, 1(4), 82. Article
Nohynek, L. J., Alakomi, H. L., Kähkönen, M. P., Heinonen, M., Helander, I. M., Oksman-Caldentey, K. M., & Puupponen-Pimiä, R. H. (2006). Berry phenolics: antimicrobial properties and mechanisms of action against severe human pathogens. Nutrition and cancer, 54(1), 18-32. Article
Patel, R., & DuPont, H. L. (2015). New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clinical Infectious Diseases, 60(suppl_2), S108-S121. Article
Sonnenburg, J. L., & Bäckhed, F. (2016). Diet–microbiota interactions as moderators of human metabolism. Nature, 535(7610), 56. Abstract
Srutkova, D., Schwarzer, M., Hudcovic, T., Zakostelska, Z., Drab, V., Spanova, A., ... & Schabussova, I. (2015). Bifidobacterium longum CCM 7952 promotes epithelial barrier function and prevents acute DSS-induced colitis in strictly strain-specific manner. PLoS One, 10(7), e0134050. Article
Slavin, J. (2013). Fiber and prebiotics: mechanism and health benefits. Nutrients, 5(4), 1417-1435. Article
Stecher, B. (2015). The roles of inflammation, nutrient availability and the commensal microbiota in enteric pathogen infection. In Metabolism and Bacterial Pathogenesis (pp. 297-320). American Society of Microbiology. Abstract
Thomas, L. V., Suzuki, K., & Zhao, J. (2015). Probiotics: a proactive approach to health. A symposium report. British Journal of Nutrition, 114(S1), S1-S15. Article
Villena, J., & Kitazawa, H. (2017). immunobiotics—interactions of Beneficial Microbes with the immune System. Frontiers in immunology, 8, 1580. Article
Villena, J., Vizoso-Pinto, M. G., & Kitazawa, H. (2016). Intestinal innate antiviral immunity and immunobiotics: beneficial effects against rotavirus infection. Frontiers in immunology, 7, 563. Article
Xu, H. B., Jiang, R. H., & Sheng, H. B. (2017). Meta-analysis of the effects of Bifidobacterium preparations for the prevention and treatment of pediatric antibiotic-associated diarrhea in China. Complementary therapies in medicine, 33, 105-113. Abstract
Yang, J., Qian, K., Wang, C., & Wu, Y. (2017). Roles of Probiotic Lactobacilli Inclusion in Helping Piglets Establish Healthy Intestinal Inter-environment for Pathogen Defense. Probiotics and Antimicrobial Proteins, 1-8. Abstract
Polyphenols: Antimicrobial & Anti-inflammatory
Bishayee, A., Barnes, K. F., Bhatia, D., Darvesh, A. S., & Carroll, R. T. (2010). Resveratrol suppresses oxidative stress and inflammatory response in diethylnitrosamine-initiated rat hepatocarcinogenesis. Cancer prevention research, 3(6), 753-763. Article
Cani, P. D., & Delzenne, N. M. (2011). The gut microbiome as therapeutic target. Pharmacology & therapeutics, 130(2), 202-212. Article
Cardona, F., Andrés-Lacueva, C., Tulipani, S., Tinahones, F. J., & Queipo-Ortuño, M. I. (2013). Benefits of polyphenols on gut microbiota and implications in human health. The Journal of nutritional biochemistry, 24(8), 1415-1422. Article
Duda-Chodak, A., Tarko, T., Satora, P., & Sroka, P. (2015). Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. European journal of nutrition, 54(3), 325-341. Article
Dueñas, M., Muñoz-González, I., Cueva, C., Jiménez-Girón, A., Sánchez-Patán, F., Santos-Buelga, C., … & Bartolomé, B. (2015). A survey of modulation of gut microbiota by dietary polyphenols. BioMed research international, 2015. Article
Feldman, M. Tanabe, S., Howell, A, Grenier, D. (2012). Cranberry proanthocyanidins inhibit the adherence properties of Candida albicans and cytokine secretion by oral epithelial cells. BMC Comp and Alt Med, 12 (6):1-12. Article
Gupta, A., Dwivedi, M., Mahdi, A. A., Gowda, G. N., Khetrapal, C. L., & Bhandari, M. (2012). Inhibition of adherence of multi-drug resistant E. coli by proanthocyanidin. Urological research, 40(2), 143-150. Abstract
Heinonen, M. (2007). Antioxidant activity and antimicrobial effect of berry phenolics–a Finnish perspective. Molecular nutrition & food research, 51(6), 684-691. Abstract
Hossen, I., Hua, W., Ting, L., Mehmood, A., Jingyi, S., Duoxia, X., ... & Fang, Y. (2019). Phytochemicals and inflammatory bowel disease: a review. Critical reviews in food science and nutrition, 1-25. Abstract
JABEHDAR, S. K., AGHJEHGHESHLAGH, F. M., Navidshad, B., Mahdavi, A., & Staji, H. (2019). In Vitro Antimicrobial Effect of Phenolic Extracts and Resistant Starch on Escherichia coli, Streptococcus spp., Bifidobacterium and Lactobacillus spp. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 25(2). Article
Jiao, X., Wang, Y., Lin, Y., Lang, Y., Li, E., Zhang, X., ... & Li, B. (2019). Blueberry polyphenols extract as a potential prebiotic with anti-obesity effects on C57BL/6 J mice by modulating the gut microbiota. The Journal of nutritional biochemistry, 64, 88-100. Abstract
Joseph, S.V., Edirisinghe, I., & Burton-Freeman, B.M. (2014). Berries: anti-inflammatory effects in humans. J Agric Food Chem, 7; 62(18), 3886-903. Abstract
Joseph, S.V., Edirisinghe, I., & Burton-Freeman, B.M. (2016). Fruit Polyphenols: A Reviewof Anti-inflammatory Effects in Humans. Crit Rev Food Sci Nutr, 56(3), 419-44. Abstract
Kemperman, R. A., Bolca, S., Roger, L. C., & Vaughan, E. E. (2010). Novel approaches for analysing gut microbes and dietary polyphenols: challenges and opportunities. Microbiology, 156(11), 3224-3231.Article
Kawabata, K., Yoshioka, Y., & Terao, J. (2019). Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules, 24(2), 370. Article
Khoo, H. E., Lim, S. M., & Azlan, A. (2019). Evidence-Based Therapeutic Effects of Anthocyanins from Foods. Pakistan Journal of Nutrition, 18(1), 1-11.Article
Lacombe, A., Wu, V. C., White, J., Tadepalli, S., & Andre, E. E. (2012). The antimicrobial properties of the lowbush blueberry (Vaccinium angustifolium) fractional components against foodborne pathogens and the conservation of probiotic Lactobacillus rhamnosus. Food microbiology, 30(1), 124-131. Abstract
Lau, F.C., Shukitt-Hale, B., & Joseph, J.A. (2007). Nutritional intervention in brain aging: reducing the effects of inflammation and oxidative stress. Subcell Biochem, 42, 299-318. Abstract
Li, D. D., Zhao, L. X., Mylonakis, E., Hu, G. H., Zou, Y., Huang, T. K., ... & Jiang, Y. Y. (2014). In vitro and in vivo activities of pterostilbene against Candida albicans biofilms. Antimicrobial agents and chemotherapy, 58(4), 2344-2355. Article
Lima, M. C., de Sousa, C. P., Fernandez-Prada, C., Harel, J., Dubreuil, J. D., & de Souza, E. L. (2019). A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microbial pathogenesis. Abstract
Marín, L., Miguélez, E. M., Villar, C. J., & Lombó, F. (2015). Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. BioMed research international, 2015. Article
Maisuria, V. B., Lopez-de Los Santos, Y., Tufenkji, N., & Déziel, E. (2016). Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa. Scientific reports, 6, 30169. Article
Mafra, D., Borges, N., Alvarenga, L., Esgalhado, M., Cardozo, L., Lindholm, B., & Stenvinkel, P. (2019). Dietary Components That May Influence the Disturbed Gut Microbiota in Chronic Kidney Disease. Nutrients, 11(3), 496. Article
Mileo, A. M., Nisticò, P., & Miccadei, S. (2019). Polyphenols: Immunomodulatory and Therapeutic Implication in Colorectal Cancer. Frontiers in Immunology, 10. Article
Moco, S., Martin, F. P. J., & Rezzi, S. (2012). Metabolomics view on gut microbiome modulation by polyphenol-rich foods. Journal of proteome research, 11(10), 4781-4790. Abstract
Nazzaro, F., Fratianni, F., d’Acierno, A., De Feo, V., Ayala-Zavala, F. J., Gomes-Cruz, A., ... & Coppola, R. (2019). Effect of Polyphenols on Microbial Cell-Cell Communications. In Quorum Sensing (pp. 195-223). Academic Press. Chapter8
Nohynek, L. J., Alakomi, H. L., Kähkönen, M. P., Heinonen, M., Helander, I. M., Oksman-Caldentey, K. M., & Puupponen-Pimiä, R. H. (2006). Berry phenolics: antimicrobial properties and mechanisms of action against severe human pathogens. Nutrition and cancer, 54(1), 18-32. Abstract
Patel, K. D., Scarano, F. J., Kondo, M., Hurta, R. A., & Neto, C. C. (2011). Proanthocyanidin-rich extracts from cranberry fruit (Vaccinium macrocarpon Ait.) selectively inhibit the growth of human pathogenic fungi Candida spp. and Cryptococcus neoformans. Journal of agricultural and food chemistry, 59(24), 12864-12873. Abstract
Puupponen‐Pimiä, R., Nohynek, L., Hartmann‐Schmidlin, S., Kähkönen, M., Heinonen, M., Määttä‐Riihinen, K., & Oksman‐Caldentey, K. M. (2005). Berry phenolics selectively inhibit the growth of intestinal pathogens. Journal of applied microbiology, 98(4), 991-1000. Article
Puupponen-Pimia, R., Nohynek, L., Alakomi, H.L., & Oksman-Caldentey, K.M. (2005). The action of berry phenolics against human intestinal pathogens. Biofactors, 23(4), 243-51. Abstract
Puupponen‐Pimiä, R., Nohynek, L., Meier, C., Kähkönen, M., Heinonen, M., Hopia, A., & Oksman‐Caldentey, K. M. (2001). Antimicrobial properties of phenolic compounds from berries. Journal of applied microbiology, 90(4), 494-507. Article
Ozdal, T., Sela, D. A., Xiao, J., Boyacioglu, D., Chen, F., & Capanoglu, E. (2016). The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients, 8(2), 78. Article
Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International journal of molecular sciences, 16(10), 24673-24706. Article
Shmuely, H., Ofek, I., Weiss, E. I., Rones, Z., & Houri-Haddad, Y. (2012). Cranberry components for the therapy of infectious disease. Current opinion in biotechnology, 23(2), 148-152. Article
Teodoro, G. R., Ellepola, K., Seneviratne, C. J., & Koga-Ito, C. Y. (2015). Potential use of phenolic acids as anti-Candida agents: a review. Frontiers in microbiology, 6, 1420. Article
Tomás-Barberán FA, Selma MV, Espín JC. (2016). Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr Opin Clin Nutr Metab Care, 19(6), 471-476. Abstract
Valdez, J. C., & Bolling, B. W. (2019). Anthocyanins and intestinal barrier function: a review. Journal of Food Bioactives, 5, 18-30. Article
Valdés, L., Cuervo, A., Salazar, N., Ruas-Madiedo, P., Gueimonde, M., & González, S. (2015). The relationship between phenolic compounds from diet and microbiota: impact on human health. Food & function, 6(8), 2424-2439. Abstract
Vendrame, S., & Klimis-Zacas, D. (2015). Anti-inflammatory effect of anthocyanins via modulation of nuclear factor-κB and mitogen-activated protein kinase signaling cascades. Nutr Rev, 73(6), 348-58. Abstract
Berries and Metabolic Syndrome: Heart, Obesity, and Cancer Support
Baby, B., Antony, P., Al Halabi, W., Al Homedi, Z., & Vijayan, R. (2016). Structural insights into the polypharmacological activity of quercetin on serine/threonine kinases. Drug design, development and therapy, 10, 3109. Article
Basu, A., & Lyons, T.J. (2012). Strawberries, blueberries, and cranberries in the metabolic syndrome: clinical perspectives. J Agric Food Chem, 60: 5687-92. Abstract
Basu, A., Rhone, M., & Lyons, T.J. (2010) Berries: emerging impact on cardiovascular health. Nutr Rev, 68,168-177. Article
Burton-Freeman, B.M., Sandhu, A.K., & Edirisinge, I. (2016). Red Raspberries and Their Bioactive Polyphenols: Cardiometabolic and Neuronal Health Links. Adv Nutr, 7(1):44-65. Article
Casto, B. C., Knobloch, T. J., Galioto, R. L., Yu, Z., Accurso, B. T., & Warner, B. M. (2013). Chemoprevention of oral cancer by lyophilized strawberries. Anticancer research, 33(11), 4757-4766. Abstract
Edirisinghe, I., Burton-Freeman, B., & Tissa, Kappagoda, C. (2008). Mechanism of the endothelium-dependent relaxation evoked by a grape seed extract. Clin Sci (Lond), 114(4), 331-7. Article
Edirisinghe, I., Burton-Freeman, B., Varelis, P., & Kappagoda, T. (2008). Strawberry extract caused endothelium-dependent relaxation through the activation of PI3 kinase/Akt. J Agric Food Chem, 56 (20), 9383-90. Article
Eid, H. M., Wright, M. L., Anil Kumar, N. V., Qawasmeh, A., Hassan, S. T., Mocan, A., ... & Haddad, P. S. (2017). Significance of microbiota in obesity and metabolic diseases and the modulatory potential by medicinal plant and food ingredients. Frontiers in pharmacology, 8, 387. Article
Edwards, C. A., Havlik, J., Cong, W., Mullen, W., Preston, T., Morrison, D. J., & Combet, E. (2017). Polyphenols and health: Interactions between fibre, plant polyphenols and the gut microbiota. Nutrition bulletin, 42(4), 356-360. Article
Kahlon, T. S., & Smith, G. E. (2007). In vitro binding of bile acids by blueberries (Vaccinium spp.), plums (Prunus spp.), prunes (Prunus spp.), strawberries (Fragaria X ananassa), cherries (Malpighia punicifolia), cranberries (Vaccinium macrocarpon) and apples (Malus sylvestris). Food Chemistry, 100(3), 1182-1187. Article
Kristo, A. S., Klimis-Zacas, D., & Sikalidis, A. K. (2016). Protective role of dietary berries in cancer. Antioxidants, 5(4), 37. Article
Lee, J., Han, S. I., Yun, J. H., & Kim, J. H. (2015). Quercetin 3-O-glucoside suppresses epidermal growth factor–induced migration by inhibiting EGFR signaling in pancreatic cancer cells. Tumor Biology, 36(12), 9385-9393. Abstract
Marx, W., Kelly, J., Marshall, S., Nakos, S., Campbell, K., & Itsiopoulos, C. (2017). The Effect of Polyphenol-Rich Interventions on Cardiovascular Risk Factors in Haemodialysis: A Systematic Review and Meta-Analysis. Nutrients, 9(12), 1345. Article
Park, E., Edirisinghe, I., Choy Y.Y., waterhouse, A., Burton-Freeman, B. (2016). Effects of grape seed extract beverage on blood pressure and metabolic indices in individuals with pre-hypertension: a randomised, double-blinded, two-arm, parallel, placebo-controlled trial. Br J Nutr, 115(2), 226-38. Article
Park.E., Edirisinghe, I., Wei, H., Vijayakumar, L.P., Banaszewski, K., & Burton-Freeman, B. (2016). A dose-response evaluation of freeze-dried strawberries independent of fiber content on metabolic indices in abdominally obese individuals with insulin resistance in a randomized, single-blinded, diet-controlled crossover trial. Mol Nutr Food Res , 60(5), 1099-109. Article
Panickar, K.S., & Anderson, R.A. (2010). Role of dietary polyphenols in attenuating brain edema and cell swelling in cerebral ischemia. Recent Pat CNS Drug Discov, 5(2), 99-108. Article
Jenkins, D.J., Nguyen, T.H., Kendall, C.W., Faulkner, D.A., Bashyam, B, Kim, I.J., … Singer, W. (2008). The effect of strawberries in a cholesterol-lowering dietary portfolio. Metabolism, 57(12), 1636-44. Article
Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International journal of molecular sciences, 16(10), 24673-24706. Article
Somasagara, R. R., Hegde, M., Chiruvella, K. K., Musini, A., Choudhary, B., & Raghavan, S. C. (2012). Extracts of strawberry fruits induce intrinsic pathway of apoptosis in breast cancer cells and inhibits tumor progression in mice. PloS one, 7(10), e47021. Article
Weaver, J., Briscoe, T., Hou, M., Goodman, C., Kata, S., Ross, H., ... & Riches, A. (2009). Strawberry polyphenols are equally cytotoxic to tumourigenic and normal human breast and prostate cell lines. International journal of oncology, 34(3), 777-786. Article
Wichansawakun, S., & Buttar, H. S. (2019). Antioxidant Diets and Functional Foods Promote Healthy Aging and Longevity Through Diverse Mechanisms of Action. In The Role of Functional Food Security in Global Health (pp. 541-563). Academic Press. Abstract
* See Supernatant research & description tabs for more on the Probiotic Super Blend.
High ORAC Synbiotic: Post Antibiotic Care
A Proprietary blend of: 500mg
Phytonutrients- Grape Seed Extract, Wild Blueberry, Quercetin, Resveratrol, Wild Bilberry, Cranberry, Tart Cherry, Prune, Raspberry Seed, Strawberry, and Inulin from Chicory Root. ORAC 40,000.
BioImmersion Probiotic Super Blend – Probiotics- Bifidobacterium longum, Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus bulgaricus and streptococcus thermophilus; Prebiotic- Inulin from chicory Root; Supernatant- probiotic metabolites, and ORNs. 30 billion CFU.
Capsule- Cellulose & Water
HIGH ORAC SYNBIOTIC—- The High ORAC is designed as a powerful post antibiotic care, with 40,000ppm Total ORAC.*
Post Antibiotic Care: The High ORAC is the most powerful anti-oxidant product on the market, with 40,000ppm of total ORAC, and a broad-spectrum plant polyphenol that boosts nitric oxide levels in the blood, stimulates antioxidant activity, and supports efficient cellular oxygen consumption. The mix restores and renews the GI Tract, re-colonizes the gut with strong organisms, and re-energizes every cell in the body. Take 1-2 capsules daily.*
Yeast infection: Antibiotics often unbalance the microbiome (GI Tract) resulting in overgrowth of yeast in the gut and vagina. Plant extracts have antimicrobial properties, and together with the probiotic, reduce pathogenic populations. Take 1-2 caps High ORAC. Add Garlic (2-3 capsules daily) for its antimicrobial ability for 7-10 days.*
Sports, exercise, and reduction of oxidation: The High ORAC’s total 40,000ppm Oxygen Radical Absorbent Capacity means that it has a high ability to neutralize free radicals in the body. Take 1 capsules before exercise to reduce muscle soreness. Add Energy (1-2 caps) for added strength.*
Our favorite: The High ORAC has such a calmative effect that even a very sensitive gut (intestines and colon) can benefit and thrive. The intense total ORAC has a powerful anti-inflammatory quality. For very sensitive guts: Start with 1 capsule every other day and increase to 1 cap a day.*
Description
Probiotic- Certified strains of Bifidobacterium longum, Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus bulgaricus and Streptococcus thermophilus (30 billion CFU per gram); Prebiotic- Inulin from chicory Root; Supernatant- probiotic metabolites, and ORNs (Oligoribonucleotides. Also called MicroRNAs); Phytonutrients- Grape Seed Extract, Wild Blueberry, Quercetin, Resveratrol, Wild Bilberry, Cranberry, Tart Cherry, Prune, Raspberry Seed, Strawberry (Total ORAC assay 40,000 per capsule)
Advanced freeze-drying technology with 60 caps/bottle. 500 mg/ cap.
No excipients.
- Combination of Green Technology for highest phytonutrient potential and Microbiome Technology for pure cultures of pedigreed strains of standardized referenced material with Original molecular identity confirmed routinely by DNA sequencing.
- Berry extracts and Fruit- 250mg of pure freeze dried Wild Blueberry, Grape Seed Extract, Raspberry Seed, Wild Bilberry, Cranberry, Tart Cherry, Prune, Strawberry, Quercetin, and Resveratrol.
- 250mg of inulin from chicory fiber.
- 30 billion of the Super Blend of certified strains of Bifidobacterium longum, Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus bulgaricus and Streptococcus thermophilus.
- The High ORAC Synbiotic is designed for calming and rejuvenating inflammatory conditions in the GI tract. In particular, it was formulated to offer a perfect first step after antibiotic therapy.
- A new generation Synbiotic formula: The selected probiotic organisms are shown in research to be excellent colonizers of the GI Tract. They inhibit pathogens, strengthen the mucus membrane, protect from yeast and other pathogens, and create a balanced environment that bolster the health of the microbiome (GI Tract). Phenols are shown in research to have powerful anti-microbial and anti-inflammatory properties. With the extensive variety of our potent berries and fruit concentrates, the formula is brought up to a new level of regenerating the GI Tract. Their phenolic profile and fibers work synergistically with probiotic organisms to form the next generation of symbiotic formulas. The High ORAC can be utilized as a comprehensive post antibiotic care, and as a daily booster.
- The extensive variety of berries, fruits, and fiber from organic chicory root aligns with the recommended anti-oxidant score of 9-12 fruits and vegetables, with the phytonutrients and high ORAC values.
- Potent antioxidant with Total ORAC of 40,000 units per capsule (as compared to: 5-9 fruits and vegetables a day provide 1800 to 2500 ORAC units).
- Super Blend Probiotics with their supernatant and microRNA selected to protect, counteract and neutralize dietary toxins, mutagens, carcinogens and infectious organisms.
- Detoxifies dietary mycotoxins, enterotoxins, exotoxins and carcinogens.
- Reduces inflammation systemically and throughout the gastrointestinal system: Original strains in conjunction with Wild Blueberry, Wild Bilberry, Grape Seed Extract, Raspberry Seed Extract, Tart Cherry, Prune Quercetin, Resveratrol,.
- Preservation of stem cells.
- Cardiovascular health
- Regeneration of the enteric nervous system: Wild Blueberry, Wild Bilberry.
- Broad spectrum antimicrobial: Original strains in conjunction with Raspberry Seed extract, Wild Blueberry Extract, Grape Seed extract, Cranberry.
- Vision: Wild Blueberry, Wild Bilberry extt
- No fillers, flowing agents or excipients of any kind.
- Read monograph in the web library.
Research
FOOD SCIENCE: THE APPLICATION AND USE OF:
PROBIOTIC SUPER BLEND: L. ACIDOPHILUS, B. LONGUM, L. CASEI, L. BULGARICUS, AND STREPTOCOCCUS THERMOPHILUS, SUPERNATANT, AND ORNS (MICRORNA). 30 BILLON CFU.
PHYTONUTRIENTS: GRAPE SEED EXTRACT, WILD BLUEBERRY, QUERCETIN, RESVERATROL, WILD BILBERRY, CRANBERRY, TART CHERRY, PRUNE, RASPBERRY SEED, STRAWBERRY, AND INULIN FROM CHICORY ROOT.*
HIGH ACTIVE POLYPHENOL: TOTAL ORAC 40,000PPM.
Post Antibiotic Care
Aguilar, C., Mano, M., & Eulalio, A. (2018). MicroRNAs at the Host–Bacteria Interface: Host Defense or Bacterial Offense. Trends in microbiology. Abstrac
Albarracin, L., Kobayashi, H., Iida, H., Sato, N., Nochi, T., Aso, H., ... & Villena, J. (2017). Transcriptomic analysis of the innate antiviral immune response in porcine intestinal epithelial cells: influence of immunobiotic lactobacilli. Frontiers in immunology, 8, 57. Article
Alvarez-Sieiro, P., Montalbán-López, M., Mu, D., & Kuipers, O. P. (2016). Bacteriocins of lactic acid bacteria: extending the family. Applied microbiology and biotechnology, 100(7), 2939-2951. Abstract
Amalaradjou, M. A. R., & Bhunia, A. K. (2012). Modern approaches in probiotics research to control foodborne pathogens. In Advances in food and nutrition research (Vol. 67, pp. 185-239). Academic Press. Abstract
Anzaku, A. A., & Pedro, A. (2017). Antimicrobial Effect of Probiotic Lactobacilli on Candida Spp. Isolated from Oral Thrush of AIDS Defining Ill Patients. J Prob Health, 5(171), 2. Article
Arboleya, S., Watkins, C., Stanton, C., & Ross, R. P. (2016). Gut bifidobacteria populations in human health and aging. Frontiers in microbiology, 7. Article
Arena, M. P., Capozzi, V., Russo, P., Drider, D., Spano, G., & Fiocco, D. (2018). Immunobiosis and probiosis: antimicrobial activity of lactic acid bacteria with a focus on their antiviral and antifungal properties. Applied microbiology and biotechnology, 102(23), 9949-9958. Abstract
Barba-Vidal, E., Castillejos, L., López-Colom, P., Urgell, M. R., Muñoz, J. A. M., & Martín-Orúe, S. M. (2017). Evaluation of the probiotic strain Bifidobacterium longum subsp. infantis CECT 7210 capacities to improve health status and fight digestive pathogens in a piglet model. Frontiers in microbiology, 8. Article
Barba-Vidal, E., Castillejos, L., Roll, V. F., Cifuentes-Orjuela, G., Moreno Muñoz, J. A., & Martín-Orúe, S. M. (2017). The Probiotic Combination of Bifidobacterium longum subsp. infantis CECT 7210 and Bifidobacterium animalis subsp. lactis BPL6 Reduces Pathogen Loads and Improves Gut Health of Weaned Piglets Orally Challenged with Salmonella Typhimurium. Frontiers in Microbiology, 8, 1570. Article
Bhat, M. I., Kumari, A., Kapila, S., & Kapila, R. (2019). Probiotic lactobacilli mediated changes in global epigenetic signatures of human intestinal epithelial cells during Escherichia coli challenge. Annals of Microbiology, 1-10. Abstract
Bhat, M. I., & Kapila, R. (2017). Dietary metabolites derived from gut microbiota: critical modulators of epigenetic changes in mammals. Nutrition reviews, 75(5), 374-389. Abstract
Barker, A., Duster, M., Valentine, S., Archbald-Pannone, L., Guerrant, R., & Safdar, N. (2015). Probiotics for Clostridium difficile infection in adults (PICO): Study protocol for a double-blind, randomized controlled trial. Contemporary clinical trials, 44, 26-32. Article
Blaabjerg, S., Artzi, D. M., & Aabenhus, R. (2017). Probiotics for the Prevention of Antibiotic-Associated Diarrhea in Outpatients—A Systematic Review and Meta-Analysis. Antibiotics, 6(4), 21. Article
Blackwood, B. P., Yuan, C. Y., Wood, D. R., Nicolas, J. D., Grothaus, J. S., & Hunter, C. J. (2017). Probiotic Lactobacillus Species Strengthen Intestinal Barrier Function and Tight Junction Integrity in Experimental Necrotizing Enterocolitis. Journal of probiotics & health, 5(1). Article
Bron, P. A., Kleerebezem, M., Brummer, R. J., Cani, P. D., Mercenier, A., MacDonald, T. T., ... & Wells, J. M. (2017). Can probiotics modulate human disease by impacting intestinal barrier function?. British Journal of Nutrition, 117(1), 93-107. Article
Cani, P.D., Delzenne, N.M. (2011).The gut microbiome as therapeutic target. Pharmacol Ther, 130(2), 202-12.Abstract
Cavanagh, H. M., Hipwell, M., & Wilkinson, J. M. (2003). Antibacterial activity of berry fruits used for culinary purposes. Journal of medicinal food, 6(1), 57-61. Abstract
Cribby, S., Taylor, M., & Reid, G. (2009). Vaginal microbiota and the use of probiotics. Interdisciplinary perspectives on infectious diseases, 2008: 256490. Article
Druart, C., Alligier, M., Salazar, N., Neyrinck, A.M., Delzenne, N.M. (2014).Modulation of the gut microbiota by nutrients with prebiotic and probiotic properties. Adv Nutr, 5(5):624S-633S. Article
Goldenberg, J. Z., Yap, C., Lytvyn, L., Lo, C. K. F., Beardsley, J., Mertz, D., & Johnston, B. C. (2017). Probiotics for the prevention of Clostridium difficile‐associated diarrhea in adults and children. The Cochrane Library. Abstract
Goldenberg, J. Z., Lytvyn, L., Steurich, J., Parkin, P., Mahant, S., & Johnston, B. C. (2015). Probiotics for the prevention of pediatric antibiotic‐associated diarrhea. The Cochrane Library. Article
Gong, J., Bai, T., Zhang, L., Qian, W., Song, J., & Hou, X. (2017). Inhibition effect of Bifidobacterium longum, Lactobacillus acidophilus, Streptococcus thermophilus and Enterococcus faecalis and their related products on human colonic smooth muscle in vitro. PloS one, 12(12), e0189257. Article
Hayes, S. R., & Vargas, A. J. (2016). Probiotics for the Prevention of Pediatric Antibiotic-Associated Diarrhea. Explore: The Journal of Science and Healing, 12(6), 463-466. Article
Hempel, S., Newberry, S. J., Maher, A. R., Wang, Z., Miles, J. N., Shanman, R., ... & Shekelle, P. G. (2012). Probiotics for the prevention and treatment of antibiotic-associated diarrhea: a systematic review and meta-analysis. Jama, 307(18), 1959-1969. Article
Holscher, H. D. (2017). Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 8(2), 172-184. Article
Johnston, B. C., Ma, S. S., Goldenberg, J. Z., Thorlund, K., Vandvik, P. O., Loeb, M., & Guyatt, G. H. (2012). Probiotics for the prevention of Clostridium difficile–associated diarrhea: a systematic review and meta-analysis. Annals of internal medicine, 157(12), 878-888. Abstract
Johnston, B. C., Goldenberg, J. Z., Vandvik, P. O., Sun, X., & Guyatt, G. H. (2011). Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst Rev, 11(11). Abstract
Kasubuchi, M., Hasegawa, S., Hiramatsu, T., Ichimura, A., & Kimura, I. (2015). Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients, 7(4), 2839-2849. Article
Kawabata, K., Yoshioka, Y., & Terao, J. (2019). Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules, 24(2), 370. Article
Koh, A., De Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell, 165(6), 1332-1345. Article
Krautkramer, K. A., Kreznar, J. H., Romano, K. A., Vivas, E. I., Barrett-Wilt, G. A., Rabaglia, M. E., ... & Denu, J. M. (2016). Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues. Molecular cell, 64(5), 982-992. Article
Kumar, S., Bansal, A., Chakrabarti, A., & Singhi, S. (2013). Evaluation of efficacy of probiotics in prevention of Candida colonization in a PICU—a randomized controlled trial. Critical care medicine, 41(2), 565-572. Article
Lazar, V., Miyazaki, Y., Hanawa, T., Chifiriuc, M. C., Ditu, L. M., Marutescu, L., ... & Kamiya, S. (2009). The influence of some probiotic supernatants on the growth and virulence features expression of several selected enteroaggregative E. coli clinical strains. Roum Arch Microbiol Immunol, 68(4), 207-214. Article
Lecellier, C. H., Dunoyer, P., Arar, K., Lehmann-Che, J., Eyquem, S., Himber, C., ... & Voinnet, O. (2005). A cellular microRNA mediates antiviral defense in human cells. Science, 308(5721), 557-560. Article
Ling, X., Linglong, P., Weixia, D., & Hong, W. (2016). Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS-Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model. PloS one, 11(8), e0161635. Article
Liévin-Le Moal, V., & Servin, A. L. (2014). Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clinical microbiology reviews, 27(2), 167-199. Article
Maguire, M., & Maguire, G. (2019). Gut dysbiosis, leaky gut, and intestinal epithelial proliferation in neurological disorders: towards the development of a new therapeutic using amino acids, prebiotics, probiotics, and postbiotics. Reviews in the Neurosciences, 30(2), 179-201. Article
Marshall, W.E. (2014). Bacterial ORNs, a new paradigm to prevent infection. In Weston A. Price Foundation, online Article.
McFarland, L. V. (2006). Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. The American journal of gastroenterology, 101(4), 812. Abstract
Mcrorie, J. W., & Fahey, G. C. (2013). A review of gastrointestinal physiology and the mechanisms underlying the health benefits of dietary fiber: matching an effective fiber with specific patient needs. Clinical Nursing Studies, 1(4), 82. Article
Nohynek, L. J., Alakomi, H. L., Kähkönen, M. P., Heinonen, M., Helander, I. M., Oksman-Caldentey, K. M., & Puupponen-Pimiä, R. H. (2006). Berry phenolics: antimicrobial properties and mechanisms of action against severe human pathogens. Nutrition and cancer, 54(1), 18-32. Article
Patel, R., & DuPont, H. L. (2015). New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clinical Infectious Diseases, 60(suppl_2), S108-S121. Article
Sonnenburg, J. L., & Bäckhed, F. (2016). Diet–microbiota interactions as moderators of human metabolism. Nature, 535(7610), 56. Abstract
Srutkova, D., Schwarzer, M., Hudcovic, T., Zakostelska, Z., Drab, V., Spanova, A., ... & Schabussova, I. (2015). Bifidobacterium longum CCM 7952 promotes epithelial barrier function and prevents acute DSS-induced colitis in strictly strain-specific manner. PLoS One, 10(7), e0134050. Article
Slavin, J. (2013). Fiber and prebiotics: mechanism and health benefits. Nutrients, 5(4), 1417-1435. Article
Stecher, B. (2015). The roles of inflammation, nutrient availability and the commensal microbiota in enteric pathogen infection. In Metabolism and Bacterial Pathogenesis (pp. 297-320). American Society of Microbiology. Abstract
Thomas, L. V., Suzuki, K., & Zhao, J. (2015). Probiotics: a proactive approach to health. A symposium report. British Journal of Nutrition, 114(S1), S1-S15. Article
Villena, J., & Kitazawa, H. (2017). immunobiotics—interactions of Beneficial Microbes with the immune System. Frontiers in immunology, 8, 1580. Article
Villena, J., Vizoso-Pinto, M. G., & Kitazawa, H. (2016). Intestinal innate antiviral immunity and immunobiotics: beneficial effects against rotavirus infection. Frontiers in immunology, 7, 563. Article
Xu, H. B., Jiang, R. H., & Sheng, H. B. (2017). Meta-analysis of the effects of Bifidobacterium preparations for the prevention and treatment of pediatric antibiotic-associated diarrhea in China. Complementary therapies in medicine, 33, 105-113. Abstract
Yang, J., Qian, K., Wang, C., & Wu, Y. (2017). Roles of Probiotic Lactobacilli Inclusion in Helping Piglets Establish Healthy Intestinal Inter-environment for Pathogen Defense. Probiotics and Antimicrobial Proteins, 1-8. Abstract
Polyphenols: Antimicrobial & Anti-inflammatory
Bishayee, A., Barnes, K. F., Bhatia, D., Darvesh, A. S., & Carroll, R. T. (2010). Resveratrol suppresses oxidative stress and inflammatory response in diethylnitrosamine-initiated rat hepatocarcinogenesis. Cancer prevention research, 3(6), 753-763. Article
Cani, P. D., & Delzenne, N. M. (2011). The gut microbiome as therapeutic target. Pharmacology & therapeutics, 130(2), 202-212. Article
Cardona, F., Andrés-Lacueva, C., Tulipani, S., Tinahones, F. J., & Queipo-Ortuño, M. I. (2013). Benefits of polyphenols on gut microbiota and implications in human health. The Journal of nutritional biochemistry, 24(8), 1415-1422. Article
Duda-Chodak, A., Tarko, T., Satora, P., & Sroka, P. (2015). Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. European journal of nutrition, 54(3), 325-341. Article
Dueñas, M., Muñoz-González, I., Cueva, C., Jiménez-Girón, A., Sánchez-Patán, F., Santos-Buelga, C., … & Bartolomé, B. (2015). A survey of modulation of gut microbiota by dietary polyphenols. BioMed research international, 2015. Article
Feldman, M. Tanabe, S., Howell, A, Grenier, D. (2012). Cranberry proanthocyanidins inhibit the adherence properties of Candida albicans and cytokine secretion by oral epithelial cells. BMC Comp and Alt Med, 12 (6):1-12. Article
Gupta, A., Dwivedi, M., Mahdi, A. A., Gowda, G. N., Khetrapal, C. L., & Bhandari, M. (2012). Inhibition of adherence of multi-drug resistant E. coli by proanthocyanidin. Urological research, 40(2), 143-150. Abstract
Heinonen, M. (2007). Antioxidant activity and antimicrobial effect of berry phenolics–a Finnish perspective. Molecular nutrition & food research, 51(6), 684-691. Abstract
Hossen, I., Hua, W., Ting, L., Mehmood, A., Jingyi, S., Duoxia, X., ... & Fang, Y. (2019). Phytochemicals and inflammatory bowel disease: a review. Critical reviews in food science and nutrition, 1-25. Abstract
JABEHDAR, S. K., AGHJEHGHESHLAGH, F. M., Navidshad, B., Mahdavi, A., & Staji, H. (2019). In Vitro Antimicrobial Effect of Phenolic Extracts and Resistant Starch on Escherichia coli, Streptococcus spp., Bifidobacterium and Lactobacillus spp. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 25(2). Article
Jiao, X., Wang, Y., Lin, Y., Lang, Y., Li, E., Zhang, X., ... & Li, B. (2019). Blueberry polyphenols extract as a potential prebiotic with anti-obesity effects on C57BL/6 J mice by modulating the gut microbiota. The Journal of nutritional biochemistry, 64, 88-100. Abstract
Joseph, S.V., Edirisinghe, I., & Burton-Freeman, B.M. (2014). Berries: anti-inflammatory effects in humans. J Agric Food Chem, 7; 62(18), 3886-903. Abstract
Joseph, S.V., Edirisinghe, I., & Burton-Freeman, B.M. (2016). Fruit Polyphenols: A Reviewof Anti-inflammatory Effects in Humans. Crit Rev Food Sci Nutr, 56(3), 419-44. Abstract
Kemperman, R. A., Bolca, S., Roger, L. C., & Vaughan, E. E. (2010). Novel approaches for analysing gut microbes and dietary polyphenols: challenges and opportunities. Microbiology, 156(11), 3224-3231.Article
Kawabata, K., Yoshioka, Y., & Terao, J. (2019). Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules, 24(2), 370. Article
Khoo, H. E., Lim, S. M., & Azlan, A. (2019). Evidence-Based Therapeutic Effects of Anthocyanins from Foods. Pakistan Journal of Nutrition, 18(1), 1-11.Article
Lacombe, A., Wu, V. C., White, J., Tadepalli, S., & Andre, E. E. (2012). The antimicrobial properties of the lowbush blueberry (Vaccinium angustifolium) fractional components against foodborne pathogens and the conservation of probiotic Lactobacillus rhamnosus. Food microbiology, 30(1), 124-131. Abstract
Lau, F.C., Shukitt-Hale, B., & Joseph, J.A. (2007). Nutritional intervention in brain aging: reducing the effects of inflammation and oxidative stress. Subcell Biochem, 42, 299-318. Abstract
Li, D. D., Zhao, L. X., Mylonakis, E., Hu, G. H., Zou, Y., Huang, T. K., ... & Jiang, Y. Y. (2014). In vitro and in vivo activities of pterostilbene against Candida albicans biofilms. Antimicrobial agents and chemotherapy, 58(4), 2344-2355. Article
Lima, M. C., de Sousa, C. P., Fernandez-Prada, C., Harel, J., Dubreuil, J. D., & de Souza, E. L. (2019). A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microbial pathogenesis. Abstract
Marín, L., Miguélez, E. M., Villar, C. J., & Lombó, F. (2015). Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. BioMed research international, 2015. Article
Maisuria, V. B., Lopez-de Los Santos, Y., Tufenkji, N., & Déziel, E. (2016). Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa. Scientific reports, 6, 30169. Article
Mafra, D., Borges, N., Alvarenga, L., Esgalhado, M., Cardozo, L., Lindholm, B., & Stenvinkel, P. (2019). Dietary Components That May Influence the Disturbed Gut Microbiota in Chronic Kidney Disease. Nutrients, 11(3), 496. Article
Mileo, A. M., Nisticò, P., & Miccadei, S. (2019). Polyphenols: Immunomodulatory and Therapeutic Implication in Colorectal Cancer. Frontiers in Immunology, 10. Article
Moco, S., Martin, F. P. J., & Rezzi, S. (2012). Metabolomics view on gut microbiome modulation by polyphenol-rich foods. Journal of proteome research, 11(10), 4781-4790. Abstract
Nazzaro, F., Fratianni, F., d’Acierno, A., De Feo, V., Ayala-Zavala, F. J., Gomes-Cruz, A., ... & Coppola, R. (2019). Effect of Polyphenols on Microbial Cell-Cell Communications. In Quorum Sensing (pp. 195-223). Academic Press. Chapter8
Nohynek, L. J., Alakomi, H. L., Kähkönen, M. P., Heinonen, M., Helander, I. M., Oksman-Caldentey, K. M., & Puupponen-Pimiä, R. H. (2006). Berry phenolics: antimicrobial properties and mechanisms of action against severe human pathogens. Nutrition and cancer, 54(1), 18-32. Abstract
Patel, K. D., Scarano, F. J., Kondo, M., Hurta, R. A., & Neto, C. C. (2011). Proanthocyanidin-rich extracts from cranberry fruit (Vaccinium macrocarpon Ait.) selectively inhibit the growth of human pathogenic fungi Candida spp. and Cryptococcus neoformans. Journal of agricultural and food chemistry, 59(24), 12864-12873. Abstract
Puupponen‐Pimiä, R., Nohynek, L., Hartmann‐Schmidlin, S., Kähkönen, M., Heinonen, M., Määttä‐Riihinen, K., & Oksman‐Caldentey, K. M. (2005). Berry phenolics selectively inhibit the growth of intestinal pathogens. Journal of applied microbiology, 98(4), 991-1000. Article
Puupponen-Pimia, R., Nohynek, L., Alakomi, H.L., & Oksman-Caldentey, K.M. (2005). The action of berry phenolics against human intestinal pathogens. Biofactors, 23(4), 243-51. Abstract
Puupponen‐Pimiä, R., Nohynek, L., Meier, C., Kähkönen, M., Heinonen, M., Hopia, A., & Oksman‐Caldentey, K. M. (2001). Antimicrobial properties of phenolic compounds from berries. Journal of applied microbiology, 90(4), 494-507. Article
Ozdal, T., Sela, D. A., Xiao, J., Boyacioglu, D., Chen, F., & Capanoglu, E. (2016). The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients, 8(2), 78. Article
Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International journal of molecular sciences, 16(10), 24673-24706. Article
Shmuely, H., Ofek, I., Weiss, E. I., Rones, Z., & Houri-Haddad, Y. (2012). Cranberry components for the therapy of infectious disease. Current opinion in biotechnology, 23(2), 148-152. Article
Teodoro, G. R., Ellepola, K., Seneviratne, C. J., & Koga-Ito, C. Y. (2015). Potential use of phenolic acids as anti-Candida agents: a review. Frontiers in microbiology, 6, 1420. Article
Tomás-Barberán FA, Selma MV, Espín JC. (2016). Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr Opin Clin Nutr Metab Care, 19(6), 471-476. Abstract
Valdez, J. C., & Bolling, B. W. (2019). Anthocyanins and intestinal barrier function: a review. Journal of Food Bioactives, 5, 18-30. Article
Valdés, L., Cuervo, A., Salazar, N., Ruas-Madiedo, P., Gueimonde, M., & González, S. (2015). The relationship between phenolic compounds from diet and microbiota: impact on human health. Food & function, 6(8), 2424-2439. Abstract
Vendrame, S., & Klimis-Zacas, D. (2015). Anti-inflammatory effect of anthocyanins via modulation of nuclear factor-κB and mitogen-activated protein kinase signaling cascades. Nutr Rev, 73(6), 348-58. Abstract
Berries and Metabolic Syndrome: Heart, Obesity, and Cancer Support
Baby, B., Antony, P., Al Halabi, W., Al Homedi, Z., & Vijayan, R. (2016). Structural insights into the polypharmacological activity of quercetin on serine/threonine kinases. Drug design, development and therapy, 10, 3109. Article
Basu, A., & Lyons, T.J. (2012). Strawberries, blueberries, and cranberries in the metabolic syndrome: clinical perspectives. J Agric Food Chem, 60: 5687-92. Abstract
Basu, A., Rhone, M., & Lyons, T.J. (2010) Berries: emerging impact on cardiovascular health. Nutr Rev, 68,168-177. Article
Burton-Freeman, B.M., Sandhu, A.K., & Edirisinge, I. (2016). Red Raspberries and Their Bioactive Polyphenols: Cardiometabolic and Neuronal Health Links. Adv Nutr, 7(1):44-65. Article
Casto, B. C., Knobloch, T. J., Galioto, R. L., Yu, Z., Accurso, B. T., & Warner, B. M. (2013). Chemoprevention of oral cancer by lyophilized strawberries. Anticancer research, 33(11), 4757-4766. Abstract
Edirisinghe, I., Burton-Freeman, B., & Tissa, Kappagoda, C. (2008). Mechanism of the endothelium-dependent relaxation evoked by a grape seed extract. Clin Sci (Lond), 114(4), 331-7. Article
Edirisinghe, I., Burton-Freeman, B., Varelis, P., & Kappagoda, T. (2008). Strawberry extract caused endothelium-dependent relaxation through the activation of PI3 kinase/Akt. J Agric Food Chem, 56 (20), 9383-90. Article
Eid, H. M., Wright, M. L., Anil Kumar, N. V., Qawasmeh, A., Hassan, S. T., Mocan, A., ... & Haddad, P. S. (2017). Significance of microbiota in obesity and metabolic diseases and the modulatory potential by medicinal plant and food ingredients. Frontiers in pharmacology, 8, 387. Article
Edwards, C. A., Havlik, J., Cong, W., Mullen, W., Preston, T., Morrison, D. J., & Combet, E. (2017). Polyphenols and health: Interactions between fibre, plant polyphenols and the gut microbiota. Nutrition bulletin, 42(4), 356-360. Article
Kahlon, T. S., & Smith, G. E. (2007). In vitro binding of bile acids by blueberries (Vaccinium spp.), plums (Prunus spp.), prunes (Prunus spp.), strawberries (Fragaria X ananassa), cherries (Malpighia punicifolia), cranberries (Vaccinium macrocarpon) and apples (Malus sylvestris). Food Chemistry, 100(3), 1182-1187. Article
Kristo, A. S., Klimis-Zacas, D., & Sikalidis, A. K. (2016). Protective role of dietary berries in cancer. Antioxidants, 5(4), 37. Article
Lee, J., Han, S. I., Yun, J. H., & Kim, J. H. (2015). Quercetin 3-O-glucoside suppresses epidermal growth factor–induced migration by inhibiting EGFR signaling in pancreatic cancer cells. Tumor Biology, 36(12), 9385-9393. Abstract
Marx, W., Kelly, J., Marshall, S., Nakos, S., Campbell, K., & Itsiopoulos, C. (2017). The Effect of Polyphenol-Rich Interventions on Cardiovascular Risk Factors in Haemodialysis: A Systematic Review and Meta-Analysis. Nutrients, 9(12), 1345. Article
Park, E., Edirisinghe, I., Choy Y.Y., waterhouse, A., Burton-Freeman, B. (2016). Effects of grape seed extract beverage on blood pressure and metabolic indices in individuals with pre-hypertension: a randomised, double-blinded, two-arm, parallel, placebo-controlled trial. Br J Nutr, 115(2), 226-38. Article
Park.E., Edirisinghe, I., Wei, H., Vijayakumar, L.P., Banaszewski, K., & Burton-Freeman, B. (2016). A dose-response evaluation of freeze-dried strawberries independent of fiber content on metabolic indices in abdominally obese individuals with insulin resistance in a randomized, single-blinded, diet-controlled crossover trial. Mol Nutr Food Res , 60(5), 1099-109. Article
Panickar, K.S., & Anderson, R.A. (2010). Role of dietary polyphenols in attenuating brain edema and cell swelling in cerebral ischemia. Recent Pat CNS Drug Discov, 5(2), 99-108. Article
Jenkins, D.J., Nguyen, T.H., Kendall, C.W., Faulkner, D.A., Bashyam, B, Kim, I.J., … Singer, W. (2008). The effect of strawberries in a cholesterol-lowering dietary portfolio. Metabolism, 57(12), 1636-44. Article
Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International journal of molecular sciences, 16(10), 24673-24706. Article
Somasagara, R. R., Hegde, M., Chiruvella, K. K., Musini, A., Choudhary, B., & Raghavan, S. C. (2012). Extracts of strawberry fruits induce intrinsic pathway of apoptosis in breast cancer cells and inhibits tumor progression in mice. PloS one, 7(10), e47021. Article
Weaver, J., Briscoe, T., Hou, M., Goodman, C., Kata, S., Ross, H., ... & Riches, A. (2009). Strawberry polyphenols are equally cytotoxic to tumourigenic and normal human breast and prostate cell lines. International journal of oncology, 34(3), 777-786. Article
Wichansawakun, S., & Buttar, H. S. (2019). Antioxidant Diets and Functional Foods Promote Healthy Aging and Longevity Through Diverse Mechanisms of Action. In The Role of Functional Food Security in Global Health (pp. 541-563). Academic Press. Abstract
* See Supernatant research & description tabs for more on the Probiotic Super Blend.
Ingredients
High ORAC Synbiotic: Post Antibiotic Care
A Proprietary blend of: 500mg
Phytonutrients- Grape Seed Extract, Wild Blueberry, Quercetin, Resveratrol, Wild Bilberry, Cranberry, Tart Cherry, Prune, Raspberry Seed, Strawberry, and Inulin from Chicory Root. ORAC 40,000.
BioImmersion Probiotic Super Blend – Probiotics- Bifidobacterium longum, Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus bulgaricus and streptococcus thermophilus; Prebiotic- Inulin from chicory Root; Supernatant- probiotic metabolites, and ORNs. 30 billion CFU.
Capsule- Cellulose & Water
Protocol
HIGH ORAC SYNBIOTIC—- The High ORAC is designed as a powerful post antibiotic care, with 40,000ppm Total ORAC.*
Post Antibiotic Care: The High ORAC is the most powerful anti-oxidant product on the market, with 40,000ppm of total ORAC, and a broad-spectrum plant polyphenol that boosts nitric oxide levels in the blood, stimulates antioxidant activity, and supports efficient cellular oxygen consumption. The mix restores and renews the GI Tract, re-colonizes the gut with strong organisms, and re-energizes every cell in the body. Take 1-2 capsules daily.*
Yeast infection: Antibiotics often unbalance the microbiome (GI Tract) resulting in overgrowth of yeast in the gut and vagina. Plant extracts have antimicrobial properties, and together with the probiotic, reduce pathogenic populations. Take 1-2 caps High ORAC. Add Garlic (2-3 capsules daily) for its antimicrobial ability for 7-10 days.*
Sports, exercise, and reduction of oxidation: The High ORAC’s total 40,000ppm Oxygen Radical Absorbent Capacity means that it has a high ability to neutralize free radicals in the body. Take 1 capsules before exercise to reduce muscle soreness. Add Energy (1-2 caps) for added strength.*
Our favorite: The High ORAC has such a calmative effect that even a very sensitive gut (intestines and colon) can benefit and thrive. The intense total ORAC has a powerful anti-inflammatory quality. For very sensitive guts: Start with 1 capsule every other day and increase to 1 cap a day.*