High ORAC Synbiotic Formula

The new High ORAC Synbiotic formula is renowned as a comprehensive post-antibiotic care.

Our new super mix of naturally whole pedigreed probiotic organisms is grown to fully retain their oligoribonucleotides (ORNs) and supernatant metabolite secretion. As result, the organisms wake up faster and multiply with ease to generate a strong and healthy ecosystem in our GI tract.*

With an extensive blend of plant extracts with added quercetin and resveratrol, the High ORAC Synbiotic boasts of 40,000 units of Total ORAC, a 10 time increase of anti-oxidant potency, and the highest on the market! Together, the new super mix, plant extracts, and nutriceuticals offer powerful anti-oxidant, anti-pathogenic, anti-inflammatory, as well as exquisite calming properties.*

ORAC: Oxygen Radical Absorbent Capacity, 40,000ppm of Total ORAC. Super Mix probiotics with supernatant and ORNs: 30 billions CFU per gram.*

The Research tab below presents a small fraction of the science on probiotics, supernatant, ORNs, fiber, fruit and berry concentrates and extracts, and nutriceuticals.

The High ORAC Synbiotic is Vegan, Kosher, Non GMO, and Gluten Free.

$73.40

Availability: In stock

OR
Description

Details

Probiotic-  Certified strains of Bifidobacterium longum, Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus bulgaricus and Streptococcus thermophilus (30 billion CFU per gram); Prebiotic- Inulin from chicory Root; Supernatant- probiotic metabolites, and ORNs (Oligoribonucleotides.  Also called MicroRNAs); Phytonutrients- Grape Seed Extract, Wild Blueberry, Quercetin, Resveratrol, Wild Bilberry, Cranberry, Tart Cherry, Prune, Raspberry Seed, Strawberry (Total ORAC assay 40,000 per capsule)

Advanced freeze-drying technology with 60 caps/bottle. 500 mg/ cap.

No excipients.

  • Combination of Green Technology for highest phytonutrient potential and Microbiome Technology for pure cultures of pedigreed strains of standardized referenced material with Original molecular identity confirmed routinely by DNA sequencing.
  • Berry extracts and Fruit- 250mg of pure freeze dried Wild Blueberry, Grape Seed Extract, Raspberry Seed, Wild Bilberry, Cranberry, Tart Cherry, Prune, Strawberry, Quercetin, and Resveratrol.
  • 250mg of inulin from chicory fiber.
  • 25 billion of Original strains of Lactobacillus acidophilus and Bifido longum.
  • The High ORAC Synbiotic is designed for calming and rejuvenating inflammatory conditions in the GI tract. In particular, it was formulated to offer a perfect first step after antibiotic therapy.
  • A new generation Synbiotic formula: The selected probiotic organisms are shown in research to be excellent colonizers of the GI Tract. They inhibit pathogens, strengthen the mucus membrane, protect from yeast and other pathogens, and create a balanced environment that bolster the health of the microbiome (GI Tract). Phenols are shown in research to have powerful anti-microbial and anti-inflammatory properties. With the extensive variety of our potent berries and fruit concentrates, the formula is brought up to a new level of regenerating the GI Tract. Their phenolic profile and fibers work synergistically with probiotic organisms to form the next generation of symbiotic formulas. The High ORAC can be utilized as a comprehensive post antibiotic care, and as a daily booster.
  • The extensive variety of berries, fruits, and fiber from organic chicory root aligns with the recommended anti-oxidant score of 9-12 fruits and vegetables, with the phytonutrients and high ORAC values.
  • Potent antioxidant with high ORAC of 3000 units per capsule (5-9 fruits and vegetables a day provides 1800 to 2500 ORAC units).
  • Original strains selected to protect, counteract and neutralize dietary toxins, mutagens, carcinogens and infectious organisms.
  • Detoxifies dietary mycotoxins, enterotoxins, exotoxins and carcinogens.
  • Reduces inflammation systemically and throughout the gastrointestinal system: Original strains in conjunction with Wild Blueberry, Wild Bilberry, Grape Seed Extract, Raspberry Seed Extract, Tart Cherry, Prune Quercetin, Resveratrol,.
    • Preservation of stem cells.
    • Cardiovascular health
  • Regeneration of the enteric nervous system: Wild Blueberry, Wild Bilberry.
  • Broad spectrum antimicrobial: Original strains in conjunction with Raspberry Seed extract, Wild Blueberry Extract, Grape Seed extract, Cranberry.
  • Vision: Wild Blueberry, Wild Bilberry extt
  • No fillers, flowing agents or excipients of any kind.
  • Read monograph in the web library.
Research

Research

Food Science: The Application and Use of L. acidophilus, B. Longum, Grape Seed Extract, Wild Blueberry, Quercetin, Resveratrol, Wild Bilberry, Cranberry, Tart Cherry, Prune, Raspberry Seed, Strawberry and Inulin from Chicory Root.

New Generation Synbiotic: Post Antibiotic Care

Arboleya, S., Watkins, C., Stanton, C., & Ross, R. P. (2016). Gut bifidobacteria populations in human health and aging. Frontiers in microbiology, 7. DOI: 10.3389/fmicb.2016.01204

Barba-Vidal, E., Castillejos, L., López-Colom, P., Urgell, M. R., Muñoz, J. A. M., & Martín-Orúe, S. M. (2017). Evaluation of the probiotic strain Bifidobacterium longum subsp. infantis CECT 7210 capacities to improve health status and fight digestive pathogens in a piglet model. Frontiers in microbiology, 8. DOI: 10.3389/fmicb.2017.00533

Barba-Vidal, E., Castillejos, L., Roll, V. F., Cifuentes-Orjuela, G., Moreno Muñoz, J. A., & Martín-Orúe, S. M. (2017). The Probiotic Combination of Bifidobacterium longum subsp. infantis CECT 7210 and Bifidobacterium animalis subsp. lactis BPL6 Reduces Pathogen Loads and Improves Gut Health of Weaned Piglets Orally Challenged with Salmonella Typhimurium. Frontiers in Microbiology, 8, 1570. DOI: 10.3389/fmicb.2017.01570

Barker, A., Duster, M., Valentine, S., Archbald-Pannone, L., Guerrant, R., & Safdar, N. (2015). Probiotics for Clostridium difficile infection in adults (PICO): Study protocol for a double-blind, randomized controlled trial. Contemporary clinical trials, 44,26-32. DOI: 10.1016/j.cct.2015.07.015

Blaabjerg, S., Artzi, D. M., & Aabenhus, R. (2017). Probiotics for the Prevention of Antibiotic-Associated Diarrhea in Outpatients—A Systematic Review and Meta-Analysis. Antibiotics, 6(4), 21. DOI: 10.3390/antibiotics6040021

Blackwood, B. P., Yuan, C. Y., Wood, D. R., Nicolas, J. D., Grothaus, J. S., & Hunter, C. J. (2017). Probiotic Lactobacillus Species Strengthen Intestinal Barrier Function and Tight Junction Integrity in Experimental Necrotizing Enterocolitis. Journal of probiotics & health, 5(1). DOI: 10.4172/2329-8901.1000159 

Bron, P. A., Kleerebezem, M., Brummer, R. J., Cani, P. D., Mercenier, A., MacDonald, T. T., ... & Wells, J. M. (2017). Can probiotics modulate human disease by impacting intestinal barrier function?. British Journal of Nutrition, 117(1), 93-107. https://doi.org/10.1017/S0007114516004037

Cani, P.D., Delzenne, N.M. (2011).The gut microbiome as therapeutic target. Pharmacol Ther, 130(2), 202-12.DOI: 10.1016/j.pharmthera.2011.01.012

Cribby, S., Taylor, M., & Reid, G. (2009). Vaginal microbiota and the use of probiotics. Interdisciplinary perspectives on infectious diseases, 2008: 256490. DOI: 10.1155/2008/256490

Druart, C., Alligier, M., Salazar, N., Neyrinck, A.M., Delzenne, N.M. (2014).Modulation of the gut microbiota by nutrients with prebiotic and probiotic properties. Adv Nutr, 5 (5):624S-633S. DOI: 10.3945/an.114.005835

Goldenberg, J. Z., Yap, C., Lytvyn, L., Lo, C. K. F., Beardsley, J., Mertz, D., & Johnston, B. C. (2017). Probiotics for the prevention of Clostridium difficile‐associated diarrhea in adults and children. The Cochrane Library. Abstract

Goldenberg, J. Z., Lytvyn, L., Steurich, J., Parkin, P., Mahant, S., & Johnston, B. C. (2015). Probiotics for the prevention of pediatric antibiotic‐associated diarrhea. The Cochrane Library. Article

Hayes, S. R., & Vargas, A. J. (2016). Probiotics for the Prevention of Pediatric Antibiotic-Associated Diarrhea. Explore: The Journal of Science and Healing, 12(6), 463-466. DOI: 10.1016/j.explore.2016.08.015

Hempel, S., Newberry, S. J., Maher, A. R., Wang, Z., Miles, J. N., Shanman, R., ... & Shekelle, P. G. (2012). Probiotics for the prevention and treatment of antibiotic-associated diarrhea: a systematic review and meta-analysis. Jama, 307(18), 1959-1969. DOI: 10.1001/jama.2012.3507

Holscher, H. D. (2017). Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 8(2), 172-184. DOI: 10.1080/19490976.2017.1290756

Johnston, B. C., Ma, S. S., Goldenberg, J. Z., Thorlund, K., Vandvik, P. O., Loeb, M., & Guyatt, G. H. (2012). Probiotics for the prevention of Clostridium difficile–associated diarrhea: a systematic review and meta-analysis. Annals of internal medicine, 157(12), 878-888. Abstract

Johnston, B. C., Goldenberg, J. Z., Vandvik, P. O., Sun, X., & Guyatt, G. H. (2011). Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst Rev, 11(11). Abstract

Kumar, S., Bansal, A., Chakrabarti, A., & Singhi, S. (2013). Evaluation of efficacy of probiotics in prevention of Candida colonization in a PICU—a randomized controlled trial. Critical care medicine, 41 (2), 565-572. DOI: 10.1097/CCM.0b013e31826a409c

Ling, X., Linglong, P., Weixia, D., & Hong, W. (2016). Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS-Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model. PloS one, 11(8), e0161635. DOI: 10.1371/journal.pone.0161635

Liévin-Le Moal, V., & Servin, A. L. (2014). Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents.Clinical microbiology reviews, 27(2), 167-199. DOI: 10.1128/CMR.00080-13

McFarland, L. V. (2006). Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. The American journal of gastroenterology, 101 (4), 812. Abstract

Mcrorie, J. W., & Fahey, G. C. (2013). A review of gastrointestinal physiology and the mechanisms underlying the health benefits of dietary fiber: matching an effective fiber with specific patient needs. Clinical Nursing Studies, 1(4), 82. DOI: https://doi.org/10.5430/cns.v1n4p82

Patel, R., & DuPont, H. L. (2015). New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clinical Infectious Diseases, 60(suppl_2), S108-S121. DOI:10.1093/cid/civ177

Sonnenburg, J. L., & Bäckhed, F. (2016). Diet–microbiota interactions as moderators of human metabolism. Nature, 535(7610), 56. Abstract

Srutkova, D., Schwarzer, M., Hudcovic, T., Zakostelska, Z., Drab, V., Spanova, A., ... & Schabussova, I. (2015). Bifidobacterium longum CCM 7952 promotes epithelial barrier function and prevents acute DSS-induced colitis in strictly strain-specific manner. PLoS One, 10 (7), e0134050. DOI: 10.1371/journal.pone.0134050

Slavin, J. (2013). Fiber and prebiotics: mechanism and health benefits.Nutrients, 5(4), 1417-1435. DOI: 10.3390/nu5041417

Stecher, B. (2015). The roles of inflammation, nutrient availability and the commensal microbiota in enteric pathogen infection. In Metabolism and Bacterial Pathogenesis (pp. 297-320). American Society of Microbiology. DOI: 10.1128/microbiolspec.MBP-0008-2014

Thomas, L. V., Suzuki, K., & Zhao, J. (2015). Probiotics: a proactive approach to health. A symposium report. British Journal of Nutrition, 114(S1), S1-S15. DOI: 10.1017/S0007114515004043

Xu, H. B., Jiang, R. H., & Sheng, H. B. (2017). Meta-analysis of the effects of Bifidobacterium preparations for the prevention and treatment of pediatric antibiotic-associated diarrhea in China. Complementary therapies in medicine, 33, 105-113. https://doi.org/10.1016/j.ctim.2017.07.001

Yang, J., Qian, K., Wang, C., & Wu, Y. (2017). Roles of Probiotic Lactobacilli Inclusion in Helping Piglets Establish Healthy Intestinal Inter-environment for Pathogen Defense. Probiotics and Antimicrobial Proteins, 1-8. DOI: 10.1007/s12602-017-9273-y

Berry Phenolics: Antimicrobial & Anti-inflammatory

Bishayee, A., Barnes, K. F., Bhatia, D., Darvesh, A. S., & Carroll, R. T. (2010). Resveratrol suppresses oxidative stress and inflammatory response in diethylnitrosamine-initiated rat hepatocarcinogenesis. Cancer prevention research, 3(6), 753-763. DOI:10.1158/1940-6207.CAPR-09-0171

Cani, P. D., & Delzenne, N. M. (2011). The gut microbiome as therapeutic target. Pharmacology & therapeutics, 130 (2), 202-212. https://doi.org/10.1016/j.pharmthera.2011.01.012

Cardona, F., Andrés-Lacueva, C., Tulipani, S., Tinahones, F. J., & Queipo-Ortuño, M. I. (2013). Benefits of polyphenols on gut microbiota and implications in human health. The Journal of nutritional biochemistry, 24(8), 1415-1422. Article

Duda-Chodak, A., Tarko, T., Satora, P., & Sroka, P. (2015). Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. European journal of nutrition, 54 (3), 325-341. Article

Dueñas, M., Muñoz-González, I., Cueva, C., Jiménez-Girón, A., Sánchez-Patán, F., Santos-Buelga, C., … & Bartolomé, B. (2015). A survey of modulation of gut microbiota by dietary polyphenols. BioMed research international, 2015. Article

Feldman, M. Tanabe, S., Howell, A, Grenier, D. (2012). Cranberry proanthocyanidins inhibit the adherence properties of Candida albicans and cytokine secretion by oral epithelial cells. BMC Comp and Alt Med, 12 (6):1-12. DOI: 10.1186/1472-6882-12-6

Gupta, A., Dwivedi, M., Mahdi, A. A., Gowda, G. N., Khetrapal, C. L., & Bhandari, M. (2012). Inhibition of adherence of multi-drug resistant E. coli by proanthocyanidin. Urological research, 40(2), 143-150. Abstract

Heinonen, M. (2007). Antioxidant activity and antimicrobial effect of berry phenolics–a Finnish perspective. Molecular nutrition & food research, 51(6), 684-691. Abstract

Joseph, S.V., Edirisinghe, I., & Burton-Freeman, B.M. (2014). Berries: anti-inflammatory effects in humans. J Agric Food Chem, 7; 62(18), 3886-903. DOI: 10.1021/jf4044056

Joseph, S.V., Edirisinghe, I., & Burton-Freeman, B.M. (2016). Fruit Polyphenols: A Review of Anti-inflammatory Effects in Humans. Crit Rev Food Sci Nutr, 56(3), 419-44. DOI: 10.1080/10408398.2013.767221

Kemperman, R. A., Bolca, S., Roger, L. C., & Vaughan, E. E. (2010). Novel approaches for analysing gut microbes and dietary polyphenols: challenges and opportunities. Microbiology, 156(11), 3224-3231.doi: 10.1099/mic.0.042127-0

Lacombe, A., Wu, V. C., White, J., Tadepalli, S., & Andre, E. E. (2012). The antimicrobial properties of the lowbush blueberry (Vaccinium angustifolium) fractional components against foodborne pathogens and the conservation of probiotic Lactobacillus rhamnosus. Food microbiology, 30(1), 124-131. https://doi.org/10.1016/j.fm.2011.10.006

Lau, F.C., Shukitt-Hale, B., & Joseph, J.A. (2007). Nutritional intervention in brain aging: reducing the effects of inflammation and oxidative stress. Subcell Biochem, 42, 299-318. Abstract

Li, D. D., Zhao, L. X., Mylonakis, E., Hu, G. H., Zou, Y., Huang, T. K., ... & Jiang, Y. Y. (2014). In vitro and in vivo activities of pterostilbene against Candida albicans biofilms. Antimicrobial agents and chemotherapy, 58(4), 2344-2355. http://aac.asm.org/content/58/4/2344.short

Marín, L., Miguélez, E. M., Villar, C. J., & Lombó, F. (2015). Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. BioMed research international,2015. DOI: 10.1155/2015/905215

Moco, S., Martin, F. P. J., & Rezzi, S. (2012). Metabolomics view on gut microbiome modulation by polyphenol-rich foods. Journal of proteome research, 11(10), 4781-4790. http://pubs.acs.org/doi/abs/10.1021/pr300581s .

Maisuria, V. B., Lopez-de Los Santos, Y., Tufenkji, N., & Déziel, E. (2016). Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa. Scientific reports,6, 30169. Article

Nohynek, L. J., Alakomi, H. L., Kähkönen, M. P., Heinonen, M., Helander, I. M., Oksman-Caldentey, K. M., & Puupponen-Pimiä, R. H. (2006). Berry phenolics: antimicrobial properties and mechanisms of action against severe human pathogens. Nutrition and cancer, 54(1), 18-32. Abstract

Patel, K. D., Scarano, F. J., Kondo, M., Hurta, R. A., & Neto, C. C. (2011). Proanthocyanidin-rich extracts from cranberry fruit (Vaccinium macrocarpon Ait.) selectively inhibit the growth of human pathogenic fungi Candida spp. and Cryptococcus neoformans. Journal of agricultural and food chemistry, 59(24), 12864-12873. Abstract

Puupponen‐Pimiä, R., Nohynek, L., Hartmann‐Schmidlin, S., Kähkönen, M., Heinonen, M., Määttä‐Riihinen, K., & Oksman‐Caldentey, K. M. (2005). Berry phenolics selectively inhibit the growth of intestinal pathogens. Journal of applied microbiology, 98(4), 991-1000. Article

Puupponen-Pimia, R., Nohynek, L., Alakomi, H.L., & Oksman-Caldentey, K.M. (2005). The action of berry phenolics against human intestinal pathogens. Biofactors, 23(4), 243-51. Abstract

Puupponen‐Pimiä, R., Nohynek, L., Meier, C., Kähkönen, M., Heinonen, M., Hopia, A., & Oksman‐Caldentey, K. M. (2001). Antimicrobial properties of phenolic compounds from berries. Journal of applied microbiology, 90(4), 494-507. Article

Ozdal, T., Sela, D. A., Xiao, J., Boyacioglu, D., Chen, F., & Capanoglu, E. (2016). The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients,8(2), 78. DOI: 10.3390/nu8020078

Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International journal of molecular sciences, 16 (10), 24673-24706. doi: 10.3390/ijms161024673

Shmuely, H., Ofek, I., Weiss, E. I., Rones, Z., & Houri-Haddad, Y. (2012). Cranberry components for the therapy of infectious disease. Current opinion in biotechnology, 23(2), 148-152. https://doi.org/10.1016/j.copbio.2011.10.009

Teodoro, G. R., Ellepola, K., Seneviratne, C. J., & Koga-Ito, C. Y. (2015). Potential use of phenolic acids as anti-Candida agents: a review. Frontiers in microbiology, 6, 1420. https://doi.org/10.3389/fmicb.2015.01420

Tomás-Barberán FA, Selma MV, Espín JC. (2016). Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr Opin Clin Nutr Metab Care, 19(6), 471-476. DOI: 10.1097/MCO.0000000000000314 .

Valdés, L., Cuervo, A., Salazar, N., Ruas-Madiedo, P., Gueimonde, M., & González, S. (2015). The relationship between phenolic compounds from diet and microbiota: impact on human health. Food & function, 6(8), 2424-2439. Abstract

Vendrame, S., & Klimis-Zacas, D. (2015). Anti-inflammatory effect of anthocyanins via modulation of nuclear factor-κB and mitogen-activated protein kinase signaling cascades. Nutr Rev, 73(6), 348-58. DOI: 10.1093/nutrit/nuu066 .

Berries and Metabolic Syndrome: Heart, Obesity, and Cancer Support

Baby, B., Antony, P., Al Halabi, W., Al Homedi, Z., & Vijayan, R. (2016). Structural insights into the polypharmacological activity of quercetin on serine/threonine kinases.Drug design, development and therapy, 10, 3109. Article

Basu, A., & Lyons, T.J. (2012). Strawberries, blueberries, and cranberries in the metabolic syndrome: clinical perspectives. J Agric Food Chem, 60: 5687-92.

Basu, A., Rhone, M., & Lyons, T.J. (2010) Berries: emerging impact on cardiovascular health. Nutr Rev,68,168-177

Burton-Freeman, B.M., Sandhu, A.K., & Edirisinge, I. (2016). Red Raspberries and Their Bioactive Polyphenols: Cardiometabolic and Neuronal Health Links. Adv Nutr, 7(1):44-65. doi: 10.3945/an.115.009639.

Casto, B. C., Knobloch, T. J., Galioto, R. L., Yu, Z., Accurso, B. T., & Warner, B. M. (2013). Chemoprevention of oral cancer by lyophilized strawberries. Anticancer research, 33(11), 4757-4766. Abstract

Edirisinghe, I., Burton-Freeman, B., & Tissa, Kappagoda, C. (2008). Mechanism of the endothelium-dependent relaxation evoked by a grape seed extract. Clin Sci (Lond), 114(4), 331-7.

Edirisinghe, I., Burton-Freeman, B., Varelis, P., & Kappagoda, T. (2008).Strawberry extract caused endothelium-dependent relaxation through the activation of PI3 kinase/Akt. J Agric Food Chem, 56 (20), 9383-90. doi: 10.1021/jf801864t.

Eid, H. M., Wright, M. L., Anil Kumar, N. V., Qawasmeh, A., Hassan, S. T., Mocan, A., ... & Haddad, P. S. (2017). Significance of microbiota in obesity and metabolic diseases and the modulatory potential by medicinal plant and food ingredients. Frontiers in pharmacology, 8, 387. https://doi.org/10.3389/fphar.2017.00387

Edwards, C. A., Havlik, J., Cong, W., Mullen, W., Preston, T., Morrison, D. J., & Combet, E. (2017). Polyphenols and health: Interactions between fibre, plant polyphenols and the gut microbiota. Nutrition bulletin, 42(4), 356-360. Article

Kahlon, T. S., & Smith, G. E. (2007). In vitro binding of bile acids by blueberries (Vaccinium spp.), plums (Prunus spp.), prunes (Prunus spp.), strawberries (Fragaria X ananassa), cherries (Malpighia punicifolia), cranberries (Vaccinium macrocarpon) and apples (Malus sylvestris). Food Chemistry, 100(3), 1182-1187. https://doi.org/10.1016/j.foodchem.2005.10.066

Kristo, A. S., Klimis-Zacas, D., & Sikalidis, A. K. (2016). Protective role of dietary berries in cancer. Antioxidants, 5(4), 37. doi: 10.3390/antiox5040037

Lee, J., Han, S. I., Yun, J. H., & Kim, J. H. (2015). Quercetin 3-O-glucoside suppresses epidermal growth factor–induced migration by inhibiting EGFR signaling in pancreatic cancer cells. Tumor Biology, 36(12), 9385-9393. DOI: 10.1007/s13277-015-3682-x .

Marx, W., Kelly, J., Marshall, S., Nakos, S., Campbell, K., & Itsiopoulos, C. (2017). The Effect of Polyphenol-Rich Interventions on Cardiovascular Risk Factors in Haemodialysis: A Systematic Review and Meta-Analysis. Nutrients, 9(12), 1345. doi: 10.3390/nu9121345

Park, E., Edirisinghe, I., Choy Y.Y., waterhouse, A., Burton-Freeman, B. (2016). Effects of grape seed extract beverage on blood pressure and metabolic indices in individuals with pre-hypertension: a randomised, double-blinded, two-arm, parallel, placebo-controlled trial. Br J Nutr, 115(2), 226-38. doi: 10.1017/S0007114515004328.

Park.E., Edirisinghe, I., Wei, H., Vijayakumar, L.P., Banaszewski, K., & Burton-Freeman, B. (2016). A dose-response evaluation of freeze-dried strawberries independent of fiber content on metabolic indices in abdominally obese individuals with insulin resistance in a randomized, single-blinded, diet-controlled crossover trial. Mol Nutr Food Res , 60(5), 1099-109.doi: 10.1002/mnfr.201500845 .

Panickar, K.S., & Anderson, R.A. (2010). Role of dietary polyphenols in attenuating brain edema and cell swelling in cerebral ischemia. Recent Pat CNS Drug Discov, 5(2), 99-108. DOI: https://doi.org/10.2174/157488910791213149

Jenkins, D.J., Nguyen, T.H., Kendall, C.W., Faulkner, D.A., Bashyam, B, Kim, I.J., … Singer, W. (2008). The effect of strawberries in a cholesterol-lowering dietary portfolio. Metabolism, 57(12), 1636-44. DOI: 10.1016/j.metabol.2008.07.018.

Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International journal of molecular sciences, 16 (10), 24673-24706. Article

Somasagara, R. R., Hegde, M., Chiruvella, K. K., Musini, A., Choudhary, B., & Raghavan, S. C. (2012). Extracts of strawberry fruits induce intrinsic pathway of apoptosis in breast cancer cells and inhibits tumor progression in mice. PloS one, 7(10), e47021. Article

Weaver, J., Briscoe, T., Hou, M., Goodman, C., Kata, S., Ross, H., ... & Riches, A. (2009). Strawberry polyphenols are equally cytotoxic to tumourigenic and normal human breast and prostate cell lines. International journal of oncology, 34(3), 777-786. Doi: 10.3892/ijo_0000203

Ingredients

Ingredients

High ORAC Synbiotic: Post Antibiotic Care

A Proprietary blend of:                                        500mg

Phytonutrients- Grape Seed Extract, Wild Blueberry, Quercetin, Resveratrol, Wild Bilberry, Cranberry, Tart Cherry, Prune, Raspberry Seed, Strawberry, and Inulin from Chicory Root. ORAC 40,000.

BioImmersion Probiotic Super BlendProbiotics- Bifidobacterium longum, Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus bulgaricus and streptococcus thermophilus; Prebiotic- Inulin from chicory Root; Supernatant- probiotic metabolites, and ORNs. 30 billion CFU.

Capsule- Cellulose & Water

Suggested Use

Suggested Use

HIGH ORAC SYNBIOTIC—- The High ORAC is designed as a powerful post antibiotic care, with 40,000ppm Total ORAC.*

Post Antibiotic Care: The High ORAC is the most powerful anti-oxidant product on the market, with 40,000ppm of total ORAC, and a broad-spectrum plant polyphenol that boosts nitric oxide levels in the blood, stimulates antioxidant activity, and supports efficient cellular oxygen consumption. The mix restores and renews the GI Tract, re-colonizes the gut with strong organisms, and re-energizes every cell in the body. Take 1-2 capsules daily.*

Yeast infection: Antibiotics often unbalance the microbiome (GI Tract) resulting in overgrowth of yeast in the gut and vagina. Plant extracts have antimicrobial properties, and together with the probiotic, reduce pathogenic populations. Take 1-2 caps High ORAC. Add Garlic (2-3 capsules daily) for its antimicrobial ability for 7-10 days.*

Sports, exercise, and reduction of oxidation: The High ORAC’s total 40,000ppm Oxygen Radical Absorbent Capacity means that it has a high ability to neutralize free radicals in the body. Take 1 capsules before exercise to reduce muscle soreness. Add Energy (1-2 caps) for added strength.*

Our favorite: The High ORAC has such a calmative effect that even a very sensitive gut (intestines and colon) can benefit and thrive. The intense total ORAC has a powerful anti-inflammatory quality. For very sensitive guts: Start with 1 capsule every other day and increase to 1 cap a day.*

Reviews