Together, let’s put an end to deteriorating health

Original Synbiotic
Original Synbiotic
Original Synbiotic

Original Synbiotic

Immune Booster

$63.98

The Original Synbiotic Formula is the gold standard of probiotic formulas. Five pedigree ATCC probiotic lactic acid bacteria are grown for hardiness and stability. The Original is a powerfully elegant mix of prebiotic and probiotic.

Add one teaspoon to your daily routine.

20 billion cfu/tsp of certified strains of pedigreed probiotic with Therapeutic Foods in a synbiotic formula of L. acidophilus, B. longum, L. rhamnosus, L. plantarum, S. thermophilus and 4 grams of inulin derived from organic chicory fiber. Advanced freeze-drying technology. 120 grams/bottle. 4 grams/ tsp. Dairy free.  Soy free. Gluten free. No excipients.

  • Microbiome Technology creates hardy and viable pedigreed strains of L. acidophilus, B. longum, L. rhamnosus, L. plantarum, S. thermophilus.
  • Original strains of lactic acid bacteria are based on ATCC prototypical strains and confirmed routinely by 16sRNA sequencing to provide highest quality probiotic material.
  • The Original Strains are chosen for their strength, compatibility, safety and their 40 years of proven ability to neutralize food borne pathogens and xenobiotics.
    • Strains selected to protect, counteract and neutralize dietary toxins, mutagens, carcinogens and infectious organisms.
    • The contamination of food with aflatoxins is a worldwide problem. Mold mycotoxins compromise the blood-brain barrier and induce neurodegenerative processes. L rhamnosus binds AFB1 in vivo and reduces bio-absorption of the toxin from the gut. L. acidophilus and B. longum neutralize AFB1 and AFM1 by binding mechanisms. S. thermophilus reduces content of ochratoxin A.
    • Mutagens cause impaired cell function, cell death or cell transformation into cancer cells. L. acidophilus, B. longum, L. rhamnosus, S. thermophilus and L. plantarum neutralize heterocyclic amines and nitrosamines, two of the most common and powerful mutagenic molecules found in our diet.
  • Our home is a global environment. Infectious organisms come from all corners of the world.
    • Verocytotoxin producing E. coli s0157 are emerging food borne pathogens worldwide. B. longumneutralizes this toxin.
    • The collective ability of the Original probiotic organisms to protect the frontline border of our GI tract membrane from the aggressive enterovirulent pathoges is accomplished via: the production of bactercins, creation of an acid barrier, stimulation of the cell mediated immune system and protective colonization of enterocytes.
  • The lactic acid bacterial strains in the Original Synbiotic Formula have demonstrated the ability to inhibit the formation of precancerous colon lesions. Numerous trials performed validate findings.
  • Pure inulin, derived from chicory fiber, provides support as a Therapeutic Foods carrier and prebiotic. Provides an ideal food source for the lactic acid organisms to grow, thrive and to protect.
  • In the process of fermentation, inulin produces butyric acid and therefore:
    • Corrects GI permeability- establishes tight junctions.
    • Inhibits colon cancer: stimulating the differentiation of stem cells.
  • Improves habit of bowel regularity
  • No fillers, flowing agents or excipients of any kind.

1 Teaspoon Contains: 
Calories 5 
Total Carbohydrate 3g 
Dietary fiber 3g 
Soluble fiber 3g 
Proprietary Probiotic Blend 20billion CFU    3.38g 
  L. acidophilus 
  L. casei rhamnosus 
  L. plantarum 
  S. thermophilus 
  B. longum 
Inulin (from organic chicory root)

Container:  120 grams

Immune Support

AFRC, R. F. (1989). Probiotics in man and animals. Journal of applied bacteriology66(5), 365-378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x

Aguilar, C., Mano, M., & Eulalio, A. (2018). MicroRNAs at the Host–Bacteria Interface: Host Defense or Bacterial Offense. Trends in microbiologyAbstract

Azcarate-Peril, M.A., Sikes, M., Bruno-Barcena, J.M. (2011). The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer? Am J Physiol Gastrointest Liver Physiol301, G401-G424. doi:10.1152/ajpgi.00110.2011.

Bocci V. (1992). The neglected organ: Bacterial flora has a crucial immunostimulatory role. Perspectives in Biology and Medince35(2), 251–260. Abstract

Cianci, R., Franza, L., Schinzari, G., Rossi, E., Ianiro, G., Tortora, G., ... & Cammarota, G. (2019). The Interplay between Immunity and Microbiota at Intestinal Immunological Niche: The Case of Cancer. International journal of molecular sciences20(3), 501. Abstract

Dargahi, N., Johnson, J., Donkor, O., Vasiljevic, T., & Apostolopoulos, V. (2018). Immunomodulatory effects of Streptococcus thermophilus on U937 monocyte cell cultures. Journal of Functional Foods49, 241-249. https://doi.org/10.1016/j.jff.2018.08.038

Galdeano, C. M., Cazorla, S. I., Dumit, J. M. L., Vélez, E., & Perdigón, G. (2019). Beneficial Effects of Probiotic Consumption on the Immune System. Annals of Nutrition and Metabolism74(2), 115-124. Abstract

Gern, J.E. (2015). Promising candidates for allergy prevention. Journal of Allergy and Clinical Immunology, 136 (1), 23–28. Abstract

Harata, G., He, F., Takahashi, K., Hosono, A., Miyazawa, K., Yoda, K., ... & Kaminogawa, S. (2016). Human Lactobacillus strains from the intestine can suppress IgE-mediated degranulation of rat basophilic leukaemia (RBL-2H3) cells. Microorganisms4(4), 40. doi:10.3390/microorganisms4040040

Lecellier, C. H., Dunoyer, P., Arar, K., Lehmann-Che, J., Eyquem, S., Himber, C., ... & Voinnet, O. (2005). A cellular microRNA mediates antiviral defense in human cells. Science308(5721), 557-560. Article

Lilly, D. M., & Stillwell, R. H. (1965). Probiotics: growth-promoting factors produced by microorganisms. Science147(3659), 747-748. https://doi.org/10.1126/science.147.3659.747

Ma, F., Xu, S., Liu, X., Zhang, Q., Xu, X., Liu, M., ... & Cao, X. (2011). The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ. Nature immunology12(9), 861. Abstract

Madsen, K. (2006). Probiotics and the immune response. J Clin Gastroenterol40, 232–4. Abstract

Marshall, W.E. (2014). Bacterial ORNs, a new paradigm to prevent infection. In Weston A. Price Foundation, online Article.

Marshall, W. E. (2010). Oligoribonucleotides alert the immune system of animals to the imminence of microbial infection. U.S. Patent No. 7,678,557. Washington, DC: U.S. Patent and Trademark Office. Article

Nakata, K., Sugi, Y., Narabayashi, H., Kobayakawa, T., Nakanishi, Y., Tsuda, M., ... & Takahashi, K. (2017). Commensal microbiota-induced microRNA modulates intestinal epithelial permeability through the small GTPase ARF4. Journal of Biological Chemistry292(37), 15426-15433. Abstract

Nishiyama, K., Sugiyama, M., & Mukai, T. (2016). Adhesion properties of lactic acid bacteria on intestinal mucin. Microorganisms4(3), 34. Abstract

Parker, R. B. (1974). Probiotics, the other half of the antibiotic story. Anim Nutr Health29, 4-8.

Parvez, S., Malik, K.A., Kang, S., & Kim, H.Y. (2006). Probiotics and their fermented food products are beneficial for health. J Appl Microbiol. 100, 1171–85. Article

Roberfroid, M.B. (2000). Prebiotics and probiotics: Are they functional foods? Am J Clin Nutr, 71, 1682S–7S. Article

Saini, R., Saini, S., Sugandha. (2009). Probiotics: The health boosters. J Cutan Aesthet Surg, 2, 112. Letter

Salas-Jara, M. J., Ilabaca, A., Vega, M., & García, A. (2016). Biofilm forming Lactobacillus: new challenges for the development of probiotics. Microorganisms4(3), 35. doi:10.3390/microorganisms403003

Shmaryahu, A., Carrasco, M., & Valenzuela, P. D. (2014). Prediction of bacterial microRNAs and possible targets in human cell transcriptome. Journal of Microbiology52(6), 482-489. Abstract

Staedel, C., & Darfeuille, F. (2013). Micro RNA s and bacterial infection. Cellular microbiology15(9), 1496-1507. Abstract

Sunkavalli, U., Aguilar, C., Silva, R. J., Sharan, M., Cruz, A. R., Tawk, C., ... & Eulalio, A. (2017). Analysis of host microRNA function uncovers a role for miR-29b-2-5p in Shigella capture by filopodia. PLoS pathogens13(4), e1006327. Abstract

Wahid, F., Shehzad, A., Khan, T., & Kim, Y. Y. (2010). MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research1803(11), 1231-1243.  https://doi.org/10.1016/j.bbamcr.2010.06.01

Zhao, Y., & Lukiw, W. J. (2018). Microbiome-mediated upregulation of microRNA-146a in sporadic Alzheimer’s disease. Frontiers in neurology9, 145. Article

IBS:  Inflammatory Bowel Support

Balakrishnan, M., & Floch, M. H. (2012). Prebiotics, probiotics and digestive health. Current Opinion in Clinical Nutrition & Metabolic Care15(6), 580-585. Abstract

Dimidi, E., Christodoulides, S., Scott, S. M., & Whelan, K. (2017). Mechanisms of action of probiotics and the gastrointestinal microbiota on gut motility and constipation. Advances in Nutrition8(3), 484-494. Article

Distrutti, E., Monaldi, L., Ricci, P., & Fiorucci, S. (2016). Gut microbiota role in irritable bowel syndrome: New therapeutic strategies. World journal of gastroenterology22(7), 2219. Article

Ghouri, Y. A., Richards, D. M., Rahimi, E. F., Krill, J. T., Jelinek, K. A., & DuPont, A. W. (2014). Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease. Clinical and experimental gastroenterology7, 473. Article

Lin, P.W., Myers, L.E., Ray, L., Song, S.C., Nasr, T.R., Berardinelli, A.J., Kundu, K., Murthy, N., Hansen, J.M., & Neish A.S. (2009). Lactobacillus rhamnosus blocks inflammatory signaling in vivo via reactive oxygen species generation. Free Radic. Biol. Med, 47, 1205–1211. doi: 10.1016/j.freeradbiomed.2009.07.033.

Martini, E., Krug, S. M., Siegmund, B., Neurath, M. F., & Becker, C. (2017). Mend your fences: the epithelial barrier and its relationship with mucosal immunity in inflammatory bowel disease. Cellular and Molecular Gastroenterology and Hepatology4(1), 33-46. Article

Patel, R., & DuPont, H. L. (2015). New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clinical Infectious Diseases60(suppl_2), S108-S121. https://doi.org/10.1093/cid/civ177

Pedersen, G. (2000). Development, validation and implementation of an in vitro model for the study of metabolic and im-mune function in normal and inflamed human co-lonic epithelium. Autoimmunity32, 255-263. Article

Vanderpool, C., Yan, F., & Polk, B. D. (2008). Mechanisms of probiotic action: implications for therapeutic applications in inflammatory bowel diseases. Inflammatory bowel diseases14(11), 1585-1596. https://doi.org/10.1002/ibd.20525

Vitetta, L., Briskey, D., Alford, H., Hall, S., & Coulson S. (2014). Probiotics, prebiotics and the gastrointestinal tract in health and disease. Inflammopharmacology, DOI: 10.1007/s10787-014-0201-4. Article

Wasilewski, A., Zielińska, M., Storr, M., & Fichna, J. (2015). Beneficial effects of probiotics, prebiotics, synbiotics, and psychobiotics in inflammatory bowel disease. Inflammatory bowel diseases21(7), 1674-1682. Abstract

Zhang, Y., Li, L., Guo, C., Mu, D., Feng, B., Zuo, X., & Li, Y. (2016). Effects of probiotic type, dose and treatment duration on irritable bowel syndrome diagnosed by Rome III criteria: a meta-analysis. BMC gastroenterology16(1), 62. Abstract

Modulating a Healthy Microbiome: Immunity, Intestinal Barrier & Brain

Arora, T., & Bäckhed, F. (2016). The gut microbiota and metabolic disease: current understanding and future perspectives. Journal of internal medicine280(4), 339-349. Article

Blackwood, B. P., Yuan, C. Y., Wood, D. R., Nicolas, J. D., Grothaus, J. S., & Hunter, C. J. (2017). Probiotic Lactobacillus species strengthen intestinal barrier function and tight junction integrity in experimental necrotizing enterocolitis. Journal of probiotics & health5(1). Article

Bosscher, D., Breynaert, A., Pieters, L., & Hermans, N. (2009). Food-based strategies to modulate the composition of the microbiota and their associated health effects. Journal of physiology and pharmacology/Polish Physiological Society.-Kraków, 1991, currens60(S: 6), 5-11. Article

Bron, P. A., Kleerebezem, M., Brummer, R. J., Cani, P. D., Mercenier, A., MacDonald, T. T., ... & Wells, J. M. (2017). Can probiotics modulate human disease by impacting intestinal barrier function?. British Journal of Nutrition117(1), 93-107. Abstract

Cani PD, Delzenne NM. (2011).The gut microbiome as therapeutic target. Pharmacol Ther, 130(2), 202-12.DOI: 10.1016/j.pharmthera.2011.01.012

Choudhury, T. G., & Kamilya, D. (2018). Paraprobiotics: an aquaculture perspective. Reviews in AquacultureAbstract

de Vos, P., Mujagic, Z., de Haan, B. J., Siezen, R. J., Bron, P. A., Meijerink, M., ... & Troost, F. J. (2017). Lactobacillus plantarum Strains Can Enhance Human Mucosal and Systemic Immunity and Prevent Non-steroidal Anti-inflammatory Drug Induced Reduction in T Regulatory Cells. Frontiers in Immunology8, 1000. DOI:

10.3389/fimmu.2017.01000

De Vrese, M., & Schrezenmeir, J. (2008). Probiotics, prebiotics, and synbiotics. Adv. Biochem. Eng. Biotechnol, 111, 1–66. Abstract

Dinan, T. G., & Cryan, J. F. (2017). Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. The Journal of physiology595(2), 489-503. Article

Gibson, G.R., Probert, H.M., van Loo, J.A.E., & Roberfroid, M.B. (2004). Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev, 17, 257–259. Abstract

Gibson, G.R., & Roberfroid, M.B. (1995). Dietary modulation of the colonic microbiota: Introducing the concept of prebiotics. J. Nutr, 125, 1401–1412. Abstract

Hu, S., Wang, L., & Jiang, Z. (2017). Dietary Additive Probiotics Modulation of the Intestinal Microbiota. Protein and peptide letters24(5), 382-387. DOI:10.2174/0929866524666170223143615

Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N., & Fakiri, E. M. (2013). Health benefits of probiotics: a review. ISRN nutrition2013.  http://dx.doi.org/10.5402/2013/481651

Macfarlane, S. M. G. T., Macfarlane, G. T., & Cummings, J. T. (2006). Prebiotics in the gastrointestinal tract. Alimentary pharmacology & therapeutics24(5), 701-714. Article

Maguire, M., & Maguire, G. (2019). Gut dysbiosis, leaky gut, and intestinal epithelial proliferation in neurological disorders: towards the development of a new therapeutic using amino acids, prebiotics, probiotics, and postbiotics. Reviews in the Neurosciences30(2), 179-201. Article

Manzoni, P., Mostert, M., Leonessa, M. L., Priolo, C., Farina, D., Monetti, C., ... & Gomirato, G. (2006). Oral supplementation with Lactobacillus casei subspecies rhamnosus prevents enteric colonization by Candida species in preterm neonates: a randomized study. Clinical infectious diseases42(12), 1735-1742. Article

Mujagic, Z., De Vos, P., Boekschoten, M. V., Govers, C., Pieters, H. J. H., De Wit, N. J., ... & Troost, F. J. (2017). The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; a randomized double-blind placebo controlled trial. Scientific reports7, 40128. DOI:10.1038/srep40128

Nishiyama, K., Sugiyama, M., & Mukai, T. (2016). Adhesion properties of lactic acid bacteria on intestinal mucin. Microorganisms4(3), 34. Abstract

Patel, R., & DuPont, H. L. (2015). New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clinical Infectious Diseases60(suppl_2), S108-S121. Abstract

Roberfroid M. (2007). Prebiotics: The concept revisited. J. Nutr, 137, 830–837. Article

Roberfroid, M. B. (2002). Functional foods: concepts and application to inulin and oligofructose. British Journal of Nutrition87(S2), S139-S143. https://doi.org/10.1079/BJN/2002529

Sirisinha, S. (2016). The potential impact of gut microbiota on your health: Current status and future challenges. Asian Pac J Allergy Immunol34(4), 249-264. Article

Thomas, L. V., Suzuki, K., & Zhao, J. (2015). Probiotics: a proactive approach to health. A symposium report. British Journal of Nutrition114(S1), S1-S15. Abstract

Tufarelli, V., & Laudadio, V. (2016). An overview on the functional food concept: prospectives and applied researches in probiotics, prebiotics and synbiotics. J Exp Bioland Agric Sci4(3), 273-8. Article

Tsilingiri, K., & Rescigno, M. (2012). Postbiotics: what else?. Beneficial microbes4(1), 101-107. Abstract

Vitetta L., Sali A. (2008). Probiotics, prebiotics and gastrointestinal health. Med. Today, 9, 65–70. Article

Yin, X., Lee, B., Zaragoza, J., & Marco, M. L. (2017). Dietary perturbations alter the ecological significance of ingested Lactobacillus plantarum in the digestive tract. Scientific reports7(1), 7267. Abstract

Babies and Young Children’s Microbiome

Amenyogbe, N., Kollmann, T. R., & Ben-Othman, R. (2017). Early-life host–microbiome interphase: the key frontier for immune development. Frontiers in pediatrics5, 111. DOI:10.3389/fped.2017.00111

Blanton, L. V., Barratt, M. J., Charbonneau, M. R., Ahmed, T., & Gordon, J. I. (2016). Childhood undernutrition, the gut microbiota, and microbiota-directed therapeutics. Science352(6293), 1533-1533. DOI: 10.1126/science.aad9359

Cox, M. J., Huang, Y. J., Fujimura, K. E., Liu, J. T., McKean, M., Boushey, H. A., ... & Lynch, S. V. (2010). Lactobacillus casei abundance is associated with profound shifts in the infant gut microbiome. PLoS One5(1), e8745. Article

Emami, C. N., Petrosyan, M., Giuliani, S., Williams, M., Hunter, C., Prasadarao, N. V., & Ford, H. R. (2009). Role of the host defense system and intestinal microbial flora in the pathogenesis of necrotizing enterocolitis. Surgical infections10(5), 407-417. Abstract

Goldenberg, J. Z., Lytvyn, L., Steurich, J., Parkin, P., Mahant, S., & Johnston, B. C. (2015). Probiotics for the prevention of pediatric antibioticassociated diarrhea. The Cochrane LibraryAbstract

Hodzic, Z., Bolock, A. M., & Good, M. (2017). The role of mucosal immunity in the pathogenesis of necrotizing enterocolitis. Frontiers in pediatrics5, 40.Article

Hayes, S. R., & Vargas, A. J. (2016). Probiotics for the Prevention of Pediatric Antibiotic-Associated Diarrhea. Explore: The Journal of Science and Healing12(6), 463-466. https://doi.org/10.1016/j.explore.2016.08.015

Kang, D. W., Ilhan, Z. E., Isern, N. G., Hoyt, D. W., Howsmon, D. P., Shaffer, M., ... & Krajmalnik-Brown, R. (2018). Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe49, 121-131. Article

Patel, R.M., & Denning, P.W. (2013). Therapeutic use of prebiotics, probiotics, and postbiotics to prevent necrotizing enterocolitis: What is the current evidence? Clin Perinatol, 40(1), 11-25. Article

Shankar, V., Gouda, M., Moncivaiz, J., Gordon, A., Reo, N. V., Hussein, L., & Paliy, O. (2017). Differences in gut metabolites and microbial composition and functions between Egyptian and US children are consistent with their diets. Msystems2(1), e00169-16. Article

Subramanian, S., Huq, S., Yatsunenko, T., Haque, R., Mahfuz, M., Alam, M. A., ... & Barratt, M. J. (2014). Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature510(7505), 417. Abstract

Wegh, C. A., Schoterman, M. H., Vaughan, E. E., Belzer, C., & Benninga, M. A. (2017). The effect of fiber and prebiotics on children’s gastrointestinal disorders and microbiome. Expert review of gastroenterology & hepatology11(11), 1031-1045. https://doi.org/10.1080/17474124.2017.1359539

Zhang, M., Ma, W., Zhang, J., He, Y., & Wang, J. (2018). Analysis of gut microbiota profiles and microbe-disease associations in children with autism spectrum disorders in China. Scientific reports8(1), 13981. Article

Metabolic Support: Cardiovascular, Diabetes, Cancer, and Weight

Cani, P.D., Pssemiers, S., Van de Wiele, T., Guiot, Y., Everad, A., Rottier, O…. Delzenne, N.M. (2009). Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2 driven improvement of gut permeability. Gut58(8), 1091-1103. DOI:10.1136/gut.2008.165886

Cani, P. D. (2019). Severe obesity and gut microbiota: does bariatric surgery really reset the system?. Gut68(1), 5-6. Abstract

Cani, P. D., & Delzenne, N. M. (2009). The role of the gut microbiota in energy metabolism and metabolic disease. Current pharmaceutical design15(13), 1546-1558. Article

Cani, P. D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A. M., Delzenne, N. M., & Burcelin, R. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes57(6), 1470-1481. Article

Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., ... & Waget, A. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes56(7), 1761-1772. Article

Cani, P. D., Neyrinck, A. M., Fava, F., Knauf, C., Burcelin, R. G., Tuohy, K. M., ... & Delzenne, N. M. (2007). Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia50(11), 2374-2383. Article

Druat, C., Alligier, M., Salazar, N., Neyrinck, A.M., & Delzenne, N.M. (2014). Modulation of the gut microbiota by nutrients with prebiotic and probiotic properties. Adv Nur, 5(5), 624S-633S. DOI:10.3945/an.114.005835

Everard, A., & Cani, P. (2013). Diabetes, obesity and gut microbiota. Best Pract. Res. Clin. Gastroenterol27, 73–83. Article

Falcinelli, S., Rodiles, A., Hatef, A., Picchietti, S., Cossignani, L., Merrifield, D. L., ... & Carnevali, O. (2017). Dietary lipid content reorganizes gut microbiota and probiotic L. rhamnosus attenuates obesity and enhances catabolic hormonal milieu in zebrafish. Scientific reports7(1), 5512. Article

Frazier, T. H., DiBaise, J. K., & McClain, C. J. (2011). Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. Journal of Parenteral and Enteral Nutrition35(5_suppl), 14S-20S. Article

Han, J. L., & Lin, H. L. (2014). Intestinal microbiota and type 2 diabetes: from mechanism insights to therapeutic perspective. World journal of gastroenterology: WJG20(47), 17737. Article

Korkmaz, O. A., Sadi, G., Kocabas, A., Yildirim, O. G., Sumlu, E., Koca, H. B., ... & Bilgehan, M. Lactobacillus helveticus and Lactobacillus plantarum modulate renal antioxidant status in a rat model of fructose-induced metabolic syndrome. Article

Macfarlane, S., Cleary, S., Bahrami, B., Reynolds, N., & Macfarlane, G. T. (2013). Synbiotic consumption changes the metabolism and composition of the gut microbiota in older people and modifies inflammatory processes: a randomised, doubleblind, placebocontrolled crossover study. Alimentary pharmacology & therapeutics38(7), 804-816. Article

Marques, F. Z., Mackay, C. R., & Kaye, D. M. (2018). Beyond gut feelings: how the gut microbiota regulates blood pressure. Nature Reviews Cardiology15(1), 20. Article

Qin, Y., Roberts, J. D., Grimm, S. A., Lih, F. B., Deterding, L. J., Li, R., ... & Wade, P. A. (2018). An obesity-associated gut microbiome reprograms the intestinal epigenome and leads to altered colonic gene expression. Genome biology19(1), 7. Article

Roberfroid, M., Gibson, G. R., Hoyles, L., McCartney, A. L., Rastall, R., Rowland, I., ... & Guarner, F. (2010). Prebiotic effects: metabolic and health benefits. British Journal of Nutrition104(S2), S1-S63. Abstract

Serino, M., Blasco-Baque, V., Nicolas, S., & Burcelin, R. (2014). Managing the manager: gut microbes, stem cells and metabolism. Diabetes & metabolism40(3), 186-190. Abstract

Yan Q, Li X, Feng B. (2015). The efficacy and safety of probiotics intervention in preventing conversion of impaired glucose tolerance to diabetes: study protocol for a randomized, double-blinded, placebo controlled trial of the Probiotics Prevention Diabetes Programme (PPDP). BMC Endocr Discord; 15(1): 74. Article

Cardiovascular and Fatty Liver Support

Álvarez-Mercado, A. I., Navarro-Oliveros, M., Robles-Sánchez, C., Plaza-Díaz, J., Sáez-Lara, M. J., Muñoz-Quezada, S., ... & Abadía-Molina, F. (2019). Microbial Population Changes and Their Relationship with Human Health and Disease. Microorganisms7(3), 68. Article

Delzenne, N. M., Knudsen, C., Beaumont, M., Rodriguez, J., Neyrinck, A. M., & Bindels, L. B. (2019). Contribution of the gut microbiota to the regulation of host metabolism and energy balance: a focus on the gut–liver axis. Proceedings of the Nutrition Society, 1-10. Abstract

Fernandes, R., do Rosario, V. A., Mocellin, M. C., Kuntz, M. G., & Trindade, E. B. (2017). Effects of inulin-type fructans, galacto-oligosaccharides and related synbiotics on inflammatory markers in adult patients with overweight or obesity: A systematic review. Clinical Nutrition36(5), 1197-1206. Abstract

Iacono, A., Raso, G. M., Canani, R. B., Calignano, A., & Meli, R. (2011). Probiotics as an emerging therapeutic strategy to treat NAFLD: focus on molecular and biochemical mechanisms. The Journal of nutritional biochemistry22(8), 699-711. Article

Johnson-Henry et al. (2008). Lactobacillus rhamnosus strain GG prevents enterohemorrhagic Escherichia coli 0157:H7- Induced changes in epithelial barrier function. Infect Immun; 76:1340-1348. Abstract

Lee et al. (2006). Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim Biophys Acta; 1761: 736-744. Article

Safari, Z., & Gérard, P. (2019). The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cellular and Molecular Life Sciences, 1-18. Abstract

Shalitin, S., Battelino, T., & Moreno, L. A. (2019). Obesity, Metabolic Syndrome and Nutrition. Nutrition and Growth: Yearbook 2019119, 13-42.  Chapter

Wang et al. (2009). Effects of Lactobacillus plantarum MA2 isolated from Tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol diet. Appl Microbiol Biotechnol; 84: 341-347. Abstract

Yadav et al. (2007). Antidiabetic effect of probiotic dahl containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition; 23: 62-68. Article

Yari, Z., & Hekmatdoost, A. (2019). Dietary Interventions in Fatty Liver. In Dietary Interventions in Gastrointestinal Diseases (pp. 245-255). Academic Press. Abstract

ORIGINAL — The Original is designed as a foundational probiotic formula for the whole family.

Hard working probiotic: The Original is designed to handle and neutralize carcinogens, toxins, molds, yeasts, and food pathogens (e.g., salmonella). The probiotic mix binds heavy metals. Take 1 teaspoon a day. For babies, start with a few grains (mothers can dip their pinkie in the mix to feed the baby). Sensitive individuals start with ¼ teaspoon and gradually up the dosage.* 

leaky gut: The Original creates a slightly acidic pH level in the GI Tract to protect the gut membrane from pathogens like yeast. The mix produces amazingly high amounts of the short chain fatty acid butyrate, which facilitate the tightening of the gut membrane. Take 1 teaspoon daily (can take 1 teaspoon three times day during acute bouts of gastric distress).*

Digestion: Take 1 teaspoon to improve digestion, dissolve in mouth slowly. The Original in fact helps the digestion of polyphenols from fruits, berries, veggies, and greens into bioavailable shorter chains of phenolic molecules. The Original also helps digest complex carbohydrates into short chain fatty acids, important for gut health.*

Microbiome and healthy diversity: The Original has team playing organisms that help to build healthier communities in the gut.

Description 

20 billion cfu/tsp of certified strains of pedigreed probiotic with Therapeutic Foods in a synbiotic formula of L. acidophilus, B. longum, L. rhamnosus, L. plantarum, S. thermophilus and 4 grams of inulin derived from organic chicory fiber. Advanced freeze-drying technology. 120 grams/bottle. 4 grams/ tsp. Dairy free.  Soy free. Gluten free. No excipients.

  • Microbiome Technology creates hardy and viable pedigreed strains of L. acidophilus, B. longum, L. rhamnosus, L. plantarum, S. thermophilus.
  • Original strains of lactic acid bacteria are based on ATCC prototypical strains and confirmed routinely by 16sRNA sequencing to provide highest quality probiotic material.
  • The Original Strains are chosen for their strength, compatibility, safety and their 40 years of proven ability to neutralize food borne pathogens and xenobiotics.
    • Strains selected to protect, counteract and neutralize dietary toxins, mutagens, carcinogens and infectious organisms.
    • The contamination of food with aflatoxins is a worldwide problem. Mold mycotoxins compromise the blood-brain barrier and induce neurodegenerative processes. L rhamnosus binds AFB1 in vivo and reduces bio-absorption of the toxin from the gut. L. acidophilus and B. longum neutralize AFB1 and AFM1 by binding mechanisms. S. thermophilus reduces content of ochratoxin A.
    • Mutagens cause impaired cell function, cell death or cell transformation into cancer cells. L. acidophilus, B. longum, L. rhamnosus, S. thermophilus and L. plantarum neutralize heterocyclic amines and nitrosamines, two of the most common and powerful mutagenic molecules found in our diet.
  • Our home is a global environment. Infectious organisms come from all corners of the world.
    • Verocytotoxin producing E. coli s0157 are emerging food borne pathogens worldwide. B. longumneutralizes this toxin.
    • The collective ability of the Original probiotic organisms to protect the frontline border of our GI tract membrane from the aggressive enterovirulent pathoges is accomplished via: the production of bactercins, creation of an acid barrier, stimulation of the cell mediated immune system and protective colonization of enterocytes.
  • The lactic acid bacterial strains in the Original Synbiotic Formula have demonstrated the ability to inhibit the formation of precancerous colon lesions. Numerous trials performed validate findings.
  • Pure inulin, derived from chicory fiber, provides support as a Therapeutic Foods carrier and prebiotic. Provides an ideal food source for the lactic acid organisms to grow, thrive and to protect.
  • In the process of fermentation, inulin produces butyric acid and therefore:
    • Corrects GI permeability- establishes tight junctions.
    • Inhibits colon cancer: stimulating the differentiation of stem cells.
  • Improves habit of bowel regularity
  • No fillers, flowing agents or excipients of any kind.

Ingredients

1 Teaspoon Contains: 
Calories 5 
Total Carbohydrate 3g 
Dietary fiber 3g 
Soluble fiber 3g 
Proprietary Probiotic Blend 20billion CFU    3.38g 
  L. acidophilus 
  L. casei rhamnosus 
  L. plantarum 
  S. thermophilus 
  B. longum 
Inulin (from organic chicory root)

Container:  120 grams

Research

Immune Support

AFRC, R. F. (1989). Probiotics in man and animals. Journal of applied bacteriology66(5), 365-378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x

Aguilar, C., Mano, M., & Eulalio, A. (2018). MicroRNAs at the Host–Bacteria Interface: Host Defense or Bacterial Offense. Trends in microbiologyAbstract

Azcarate-Peril, M.A., Sikes, M., Bruno-Barcena, J.M. (2011). The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer? Am J Physiol Gastrointest Liver Physiol301, G401-G424. doi:10.1152/ajpgi.00110.2011.

Bocci V. (1992). The neglected organ: Bacterial flora has a crucial immunostimulatory role. Perspectives in Biology and Medince35(2), 251–260. Abstract

Cianci, R., Franza, L., Schinzari, G., Rossi, E., Ianiro, G., Tortora, G., ... & Cammarota, G. (2019). The Interplay between Immunity and Microbiota at Intestinal Immunological Niche: The Case of Cancer. International journal of molecular sciences20(3), 501. Abstract

Dargahi, N., Johnson, J., Donkor, O., Vasiljevic, T., & Apostolopoulos, V. (2018). Immunomodulatory effects of Streptococcus thermophilus on U937 monocyte cell cultures. Journal of Functional Foods49, 241-249. https://doi.org/10.1016/j.jff.2018.08.038

Galdeano, C. M., Cazorla, S. I., Dumit, J. M. L., Vélez, E., & Perdigón, G. (2019). Beneficial Effects of Probiotic Consumption on the Immune System. Annals of Nutrition and Metabolism74(2), 115-124. Abstract

Gern, J.E. (2015). Promising candidates for allergy prevention. Journal of Allergy and Clinical Immunology, 136 (1), 23–28. Abstract

Harata, G., He, F., Takahashi, K., Hosono, A., Miyazawa, K., Yoda, K., ... & Kaminogawa, S. (2016). Human Lactobacillus strains from the intestine can suppress IgE-mediated degranulation of rat basophilic leukaemia (RBL-2H3) cells. Microorganisms4(4), 40. doi:10.3390/microorganisms4040040

Lecellier, C. H., Dunoyer, P., Arar, K., Lehmann-Che, J., Eyquem, S., Himber, C., ... & Voinnet, O. (2005). A cellular microRNA mediates antiviral defense in human cells. Science308(5721), 557-560. Article

Lilly, D. M., & Stillwell, R. H. (1965). Probiotics: growth-promoting factors produced by microorganisms. Science147(3659), 747-748. https://doi.org/10.1126/science.147.3659.747

Ma, F., Xu, S., Liu, X., Zhang, Q., Xu, X., Liu, M., ... & Cao, X. (2011). The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ. Nature immunology12(9), 861. Abstract

Madsen, K. (2006). Probiotics and the immune response. J Clin Gastroenterol40, 232–4. Abstract

Marshall, W.E. (2014). Bacterial ORNs, a new paradigm to prevent infection. In Weston A. Price Foundation, online Article.

Marshall, W. E. (2010). Oligoribonucleotides alert the immune system of animals to the imminence of microbial infection. U.S. Patent No. 7,678,557. Washington, DC: U.S. Patent and Trademark Office. Article

Nakata, K., Sugi, Y., Narabayashi, H., Kobayakawa, T., Nakanishi, Y., Tsuda, M., ... & Takahashi, K. (2017). Commensal microbiota-induced microRNA modulates intestinal epithelial permeability through the small GTPase ARF4. Journal of Biological Chemistry292(37), 15426-15433. Abstract

Nishiyama, K., Sugiyama, M., & Mukai, T. (2016). Adhesion properties of lactic acid bacteria on intestinal mucin. Microorganisms4(3), 34. Abstract

Parker, R. B. (1974). Probiotics, the other half of the antibiotic story. Anim Nutr Health29, 4-8.

Parvez, S., Malik, K.A., Kang, S., & Kim, H.Y. (2006). Probiotics and their fermented food products are beneficial for health. J Appl Microbiol. 100, 1171–85. Article

Roberfroid, M.B. (2000). Prebiotics and probiotics: Are they functional foods? Am J Clin Nutr, 71, 1682S–7S. Article

Saini, R., Saini, S., Sugandha. (2009). Probiotics: The health boosters. J Cutan Aesthet Surg, 2, 112. Letter

Salas-Jara, M. J., Ilabaca, A., Vega, M., & García, A. (2016). Biofilm forming Lactobacillus: new challenges for the development of probiotics. Microorganisms4(3), 35. doi:10.3390/microorganisms403003

Shmaryahu, A., Carrasco, M., & Valenzuela, P. D. (2014). Prediction of bacterial microRNAs and possible targets in human cell transcriptome. Journal of Microbiology52(6), 482-489. Abstract

Staedel, C., & Darfeuille, F. (2013). Micro RNA s and bacterial infection. Cellular microbiology15(9), 1496-1507. Abstract

Sunkavalli, U., Aguilar, C., Silva, R. J., Sharan, M., Cruz, A. R., Tawk, C., ... & Eulalio, A. (2017). Analysis of host microRNA function uncovers a role for miR-29b-2-5p in Shigella capture by filopodia. PLoS pathogens13(4), e1006327. Abstract

Wahid, F., Shehzad, A., Khan, T., & Kim, Y. Y. (2010). MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research1803(11), 1231-1243.  https://doi.org/10.1016/j.bbamcr.2010.06.01

Zhao, Y., & Lukiw, W. J. (2018). Microbiome-mediated upregulation of microRNA-146a in sporadic Alzheimer’s disease. Frontiers in neurology9, 145. Article

IBS:  Inflammatory Bowel Support

Balakrishnan, M., & Floch, M. H. (2012). Prebiotics, probiotics and digestive health. Current Opinion in Clinical Nutrition & Metabolic Care15(6), 580-585. Abstract

Dimidi, E., Christodoulides, S., Scott, S. M., & Whelan, K. (2017). Mechanisms of action of probiotics and the gastrointestinal microbiota on gut motility and constipation. Advances in Nutrition8(3), 484-494. Article

Distrutti, E., Monaldi, L., Ricci, P., & Fiorucci, S. (2016). Gut microbiota role in irritable bowel syndrome: New therapeutic strategies. World journal of gastroenterology22(7), 2219. Article

Ghouri, Y. A., Richards, D. M., Rahimi, E. F., Krill, J. T., Jelinek, K. A., & DuPont, A. W. (2014). Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease. Clinical and experimental gastroenterology7, 473. Article

Lin, P.W., Myers, L.E., Ray, L., Song, S.C., Nasr, T.R., Berardinelli, A.J., Kundu, K., Murthy, N., Hansen, J.M., & Neish A.S. (2009). Lactobacillus rhamnosus blocks inflammatory signaling in vivo via reactive oxygen species generation. Free Radic. Biol. Med, 47, 1205–1211. doi: 10.1016/j.freeradbiomed.2009.07.033.

Martini, E., Krug, S. M., Siegmund, B., Neurath, M. F., & Becker, C. (2017). Mend your fences: the epithelial barrier and its relationship with mucosal immunity in inflammatory bowel disease. Cellular and Molecular Gastroenterology and Hepatology4(1), 33-46. Article

Patel, R., & DuPont, H. L. (2015). New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clinical Infectious Diseases60(suppl_2), S108-S121. https://doi.org/10.1093/cid/civ177

Pedersen, G. (2000). Development, validation and implementation of an in vitro model for the study of metabolic and im-mune function in normal and inflamed human co-lonic epithelium. Autoimmunity32, 255-263. Article

Vanderpool, C., Yan, F., & Polk, B. D. (2008). Mechanisms of probiotic action: implications for therapeutic applications in inflammatory bowel diseases. Inflammatory bowel diseases14(11), 1585-1596. https://doi.org/10.1002/ibd.20525

Vitetta, L., Briskey, D., Alford, H., Hall, S., & Coulson S. (2014). Probiotics, prebiotics and the gastrointestinal tract in health and disease. Inflammopharmacology, DOI: 10.1007/s10787-014-0201-4. Article

Wasilewski, A., Zielińska, M., Storr, M., & Fichna, J. (2015). Beneficial effects of probiotics, prebiotics, synbiotics, and psychobiotics in inflammatory bowel disease. Inflammatory bowel diseases21(7), 1674-1682. Abstract

Zhang, Y., Li, L., Guo, C., Mu, D., Feng, B., Zuo, X., & Li, Y. (2016). Effects of probiotic type, dose and treatment duration on irritable bowel syndrome diagnosed by Rome III criteria: a meta-analysis. BMC gastroenterology16(1), 62. Abstract

Modulating a Healthy Microbiome: Immunity, Intestinal Barrier & Brain

Arora, T., & Bäckhed, F. (2016). The gut microbiota and metabolic disease: current understanding and future perspectives. Journal of internal medicine280(4), 339-349. Article

Blackwood, B. P., Yuan, C. Y., Wood, D. R., Nicolas, J. D., Grothaus, J. S., & Hunter, C. J. (2017). Probiotic Lactobacillus species strengthen intestinal barrier function and tight junction integrity in experimental necrotizing enterocolitis. Journal of probiotics & health5(1). Article

Bosscher, D., Breynaert, A., Pieters, L., & Hermans, N. (2009). Food-based strategies to modulate the composition of the microbiota and their associated health effects. Journal of physiology and pharmacology/Polish Physiological Society.-Kraków, 1991, currens60(S: 6), 5-11. Article

Bron, P. A., Kleerebezem, M., Brummer, R. J., Cani, P. D., Mercenier, A., MacDonald, T. T., ... & Wells, J. M. (2017). Can probiotics modulate human disease by impacting intestinal barrier function?. British Journal of Nutrition117(1), 93-107. Abstract

Cani PD, Delzenne NM. (2011).The gut microbiome as therapeutic target. Pharmacol Ther, 130(2), 202-12.DOI: 10.1016/j.pharmthera.2011.01.012

Choudhury, T. G., & Kamilya, D. (2018). Paraprobiotics: an aquaculture perspective. Reviews in AquacultureAbstract

de Vos, P., Mujagic, Z., de Haan, B. J., Siezen, R. J., Bron, P. A., Meijerink, M., ... & Troost, F. J. (2017). Lactobacillus plantarum Strains Can Enhance Human Mucosal and Systemic Immunity and Prevent Non-steroidal Anti-inflammatory Drug Induced Reduction in T Regulatory Cells. Frontiers in Immunology8, 1000. DOI:

10.3389/fimmu.2017.01000

De Vrese, M., & Schrezenmeir, J. (2008). Probiotics, prebiotics, and synbiotics. Adv. Biochem. Eng. Biotechnol, 111, 1–66. Abstract

Dinan, T. G., & Cryan, J. F. (2017). Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. The Journal of physiology595(2), 489-503. Article

Gibson, G.R., Probert, H.M., van Loo, J.A.E., & Roberfroid, M.B. (2004). Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev, 17, 257–259. Abstract

Gibson, G.R., & Roberfroid, M.B. (1995). Dietary modulation of the colonic microbiota: Introducing the concept of prebiotics. J. Nutr, 125, 1401–1412. Abstract

Hu, S., Wang, L., & Jiang, Z. (2017). Dietary Additive Probiotics Modulation of the Intestinal Microbiota. Protein and peptide letters24(5), 382-387. DOI:10.2174/0929866524666170223143615

Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N., & Fakiri, E. M. (2013). Health benefits of probiotics: a review. ISRN nutrition2013.  http://dx.doi.org/10.5402/2013/481651

Macfarlane, S. M. G. T., Macfarlane, G. T., & Cummings, J. T. (2006). Prebiotics in the gastrointestinal tract. Alimentary pharmacology & therapeutics24(5), 701-714. Article

Maguire, M., & Maguire, G. (2019). Gut dysbiosis, leaky gut, and intestinal epithelial proliferation in neurological disorders: towards the development of a new therapeutic using amino acids, prebiotics, probiotics, and postbiotics. Reviews in the Neurosciences30(2), 179-201. Article

Manzoni, P., Mostert, M., Leonessa, M. L., Priolo, C., Farina, D., Monetti, C., ... & Gomirato, G. (2006). Oral supplementation with Lactobacillus casei subspecies rhamnosus prevents enteric colonization by Candida species in preterm neonates: a randomized study. Clinical infectious diseases42(12), 1735-1742. Article

Mujagic, Z., De Vos, P., Boekschoten, M. V., Govers, C., Pieters, H. J. H., De Wit, N. J., ... & Troost, F. J. (2017). The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; a randomized double-blind placebo controlled trial. Scientific reports7, 40128. DOI:10.1038/srep40128

Nishiyama, K., Sugiyama, M., & Mukai, T. (2016). Adhesion properties of lactic acid bacteria on intestinal mucin. Microorganisms4(3), 34. Abstract

Patel, R., & DuPont, H. L. (2015). New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clinical Infectious Diseases60(suppl_2), S108-S121. Abstract

Roberfroid M. (2007). Prebiotics: The concept revisited. J. Nutr, 137, 830–837. Article

Roberfroid, M. B. (2002). Functional foods: concepts and application to inulin and oligofructose. British Journal of Nutrition87(S2), S139-S143. https://doi.org/10.1079/BJN/2002529

Sirisinha, S. (2016). The potential impact of gut microbiota on your health: Current status and future challenges. Asian Pac J Allergy Immunol34(4), 249-264. Article

Thomas, L. V., Suzuki, K., & Zhao, J. (2015). Probiotics: a proactive approach to health. A symposium report. British Journal of Nutrition114(S1), S1-S15. Abstract

Tufarelli, V., & Laudadio, V. (2016). An overview on the functional food concept: prospectives and applied researches in probiotics, prebiotics and synbiotics. J Exp Bioland Agric Sci4(3), 273-8. Article

Tsilingiri, K., & Rescigno, M. (2012). Postbiotics: what else?. Beneficial microbes4(1), 101-107. Abstract

Vitetta L., Sali A. (2008). Probiotics, prebiotics and gastrointestinal health. Med. Today, 9, 65–70. Article

Yin, X., Lee, B., Zaragoza, J., & Marco, M. L. (2017). Dietary perturbations alter the ecological significance of ingested Lactobacillus plantarum in the digestive tract. Scientific reports7(1), 7267. Abstract

Babies and Young Children’s Microbiome

Amenyogbe, N., Kollmann, T. R., & Ben-Othman, R. (2017). Early-life host–microbiome interphase: the key frontier for immune development. Frontiers in pediatrics5, 111. DOI:10.3389/fped.2017.00111

Blanton, L. V., Barratt, M. J., Charbonneau, M. R., Ahmed, T., & Gordon, J. I. (2016). Childhood undernutrition, the gut microbiota, and microbiota-directed therapeutics. Science352(6293), 1533-1533. DOI: 10.1126/science.aad9359

Cox, M. J., Huang, Y. J., Fujimura, K. E., Liu, J. T., McKean, M., Boushey, H. A., ... & Lynch, S. V. (2010). Lactobacillus casei abundance is associated with profound shifts in the infant gut microbiome. PLoS One5(1), e8745. Article

Emami, C. N., Petrosyan, M., Giuliani, S., Williams, M., Hunter, C., Prasadarao, N. V., & Ford, H. R. (2009). Role of the host defense system and intestinal microbial flora in the pathogenesis of necrotizing enterocolitis. Surgical infections10(5), 407-417. Abstract

Goldenberg, J. Z., Lytvyn, L., Steurich, J., Parkin, P., Mahant, S., & Johnston, B. C. (2015). Probiotics for the prevention of pediatric antibioticassociated diarrhea. The Cochrane LibraryAbstract

Hodzic, Z., Bolock, A. M., & Good, M. (2017). The role of mucosal immunity in the pathogenesis of necrotizing enterocolitis. Frontiers in pediatrics5, 40.Article

Hayes, S. R., & Vargas, A. J. (2016). Probiotics for the Prevention of Pediatric Antibiotic-Associated Diarrhea. Explore: The Journal of Science and Healing12(6), 463-466. https://doi.org/10.1016/j.explore.2016.08.015

Kang, D. W., Ilhan, Z. E., Isern, N. G., Hoyt, D. W., Howsmon, D. P., Shaffer, M., ... & Krajmalnik-Brown, R. (2018). Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe49, 121-131. Article

Patel, R.M., & Denning, P.W. (2013). Therapeutic use of prebiotics, probiotics, and postbiotics to prevent necrotizing enterocolitis: What is the current evidence? Clin Perinatol, 40(1), 11-25. Article

Shankar, V., Gouda, M., Moncivaiz, J., Gordon, A., Reo, N. V., Hussein, L., & Paliy, O. (2017). Differences in gut metabolites and microbial composition and functions between Egyptian and US children are consistent with their diets. Msystems2(1), e00169-16. Article

Subramanian, S., Huq, S., Yatsunenko, T., Haque, R., Mahfuz, M., Alam, M. A., ... & Barratt, M. J. (2014). Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature510(7505), 417. Abstract

Wegh, C. A., Schoterman, M. H., Vaughan, E. E., Belzer, C., & Benninga, M. A. (2017). The effect of fiber and prebiotics on children’s gastrointestinal disorders and microbiome. Expert review of gastroenterology & hepatology11(11), 1031-1045. https://doi.org/10.1080/17474124.2017.1359539

Zhang, M., Ma, W., Zhang, J., He, Y., & Wang, J. (2018). Analysis of gut microbiota profiles and microbe-disease associations in children with autism spectrum disorders in China. Scientific reports8(1), 13981. Article

Metabolic Support: Cardiovascular, Diabetes, Cancer, and Weight

Cani, P.D., Pssemiers, S., Van de Wiele, T., Guiot, Y., Everad, A., Rottier, O…. Delzenne, N.M. (2009). Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2 driven improvement of gut permeability. Gut58(8), 1091-1103. DOI:10.1136/gut.2008.165886

Cani, P. D. (2019). Severe obesity and gut microbiota: does bariatric surgery really reset the system?. Gut68(1), 5-6. Abstract

Cani, P. D., & Delzenne, N. M. (2009). The role of the gut microbiota in energy metabolism and metabolic disease. Current pharmaceutical design15(13), 1546-1558. Article

Cani, P. D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A. M., Delzenne, N. M., & Burcelin, R. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes57(6), 1470-1481. Article

Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., ... & Waget, A. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes56(7), 1761-1772. Article

Cani, P. D., Neyrinck, A. M., Fava, F., Knauf, C., Burcelin, R. G., Tuohy, K. M., ... & Delzenne, N. M. (2007). Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia50(11), 2374-2383. Article

Druat, C., Alligier, M., Salazar, N., Neyrinck, A.M., & Delzenne, N.M. (2014). Modulation of the gut microbiota by nutrients with prebiotic and probiotic properties. Adv Nur, 5(5), 624S-633S. DOI:10.3945/an.114.005835

Everard, A., & Cani, P. (2013). Diabetes, obesity and gut microbiota. Best Pract. Res. Clin. Gastroenterol27, 73–83. Article

Falcinelli, S., Rodiles, A., Hatef, A., Picchietti, S., Cossignani, L., Merrifield, D. L., ... & Carnevali, O. (2017). Dietary lipid content reorganizes gut microbiota and probiotic L. rhamnosus attenuates obesity and enhances catabolic hormonal milieu in zebrafish. Scientific reports7(1), 5512. Article

Frazier, T. H., DiBaise, J. K., & McClain, C. J. (2011). Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. Journal of Parenteral and Enteral Nutrition35(5_suppl), 14S-20S. Article

Han, J. L., & Lin, H. L. (2014). Intestinal microbiota and type 2 diabetes: from mechanism insights to therapeutic perspective. World journal of gastroenterology: WJG20(47), 17737. Article

Korkmaz, O. A., Sadi, G., Kocabas, A., Yildirim, O. G., Sumlu, E., Koca, H. B., ... & Bilgehan, M. Lactobacillus helveticus and Lactobacillus plantarum modulate renal antioxidant status in a rat model of fructose-induced metabolic syndrome. Article

Macfarlane, S., Cleary, S., Bahrami, B., Reynolds, N., & Macfarlane, G. T. (2013). Synbiotic consumption changes the metabolism and composition of the gut microbiota in older people and modifies inflammatory processes: a randomised, doubleblind, placebocontrolled crossover study. Alimentary pharmacology & therapeutics38(7), 804-816. Article

Marques, F. Z., Mackay, C. R., & Kaye, D. M. (2018). Beyond gut feelings: how the gut microbiota regulates blood pressure. Nature Reviews Cardiology15(1), 20. Article

Qin, Y., Roberts, J. D., Grimm, S. A., Lih, F. B., Deterding, L. J., Li, R., ... & Wade, P. A. (2018). An obesity-associated gut microbiome reprograms the intestinal epigenome and leads to altered colonic gene expression. Genome biology19(1), 7. Article

Roberfroid, M., Gibson, G. R., Hoyles, L., McCartney, A. L., Rastall, R., Rowland, I., ... & Guarner, F. (2010). Prebiotic effects: metabolic and health benefits. British Journal of Nutrition104(S2), S1-S63. Abstract

Serino, M., Blasco-Baque, V., Nicolas, S., & Burcelin, R. (2014). Managing the manager: gut microbes, stem cells and metabolism. Diabetes & metabolism40(3), 186-190. Abstract

Yan Q, Li X, Feng B. (2015). The efficacy and safety of probiotics intervention in preventing conversion of impaired glucose tolerance to diabetes: study protocol for a randomized, double-blinded, placebo controlled trial of the Probiotics Prevention Diabetes Programme (PPDP). BMC Endocr Discord; 15(1): 74. Article

Cardiovascular and Fatty Liver Support

Álvarez-Mercado, A. I., Navarro-Oliveros, M., Robles-Sánchez, C., Plaza-Díaz, J., Sáez-Lara, M. J., Muñoz-Quezada, S., ... & Abadía-Molina, F. (2019). Microbial Population Changes and Their Relationship with Human Health and Disease. Microorganisms7(3), 68. Article

Delzenne, N. M., Knudsen, C., Beaumont, M., Rodriguez, J., Neyrinck, A. M., & Bindels, L. B. (2019). Contribution of the gut microbiota to the regulation of host metabolism and energy balance: a focus on the gut–liver axis. Proceedings of the Nutrition Society, 1-10. Abstract

Fernandes, R., do Rosario, V. A., Mocellin, M. C., Kuntz, M. G., & Trindade, E. B. (2017). Effects of inulin-type fructans, galacto-oligosaccharides and related synbiotics on inflammatory markers in adult patients with overweight or obesity: A systematic review. Clinical Nutrition36(5), 1197-1206. Abstract

Iacono, A., Raso, G. M., Canani, R. B., Calignano, A., & Meli, R. (2011). Probiotics as an emerging therapeutic strategy to treat NAFLD: focus on molecular and biochemical mechanisms. The Journal of nutritional biochemistry22(8), 699-711. Article

Johnson-Henry et al. (2008). Lactobacillus rhamnosus strain GG prevents enterohemorrhagic Escherichia coli 0157:H7- Induced changes in epithelial barrier function. Infect Immun; 76:1340-1348. Abstract

Lee et al. (2006). Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim Biophys Acta; 1761: 736-744. Article

Safari, Z., & Gérard, P. (2019). The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cellular and Molecular Life Sciences, 1-18. Abstract

Shalitin, S., Battelino, T., & Moreno, L. A. (2019). Obesity, Metabolic Syndrome and Nutrition. Nutrition and Growth: Yearbook 2019119, 13-42.  Chapter

Wang et al. (2009). Effects of Lactobacillus plantarum MA2 isolated from Tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol diet. Appl Microbiol Biotechnol; 84: 341-347. Abstract

Yadav et al. (2007). Antidiabetic effect of probiotic dahl containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition; 23: 62-68. Article

Yari, Z., & Hekmatdoost, A. (2019). Dietary Interventions in Fatty Liver. In Dietary Interventions in Gastrointestinal Diseases (pp. 245-255). Academic Press. Abstract

Protocol

ORIGINAL — The Original is designed as a foundational probiotic formula for the whole family.

Hard working probiotic: The Original is designed to handle and neutralize carcinogens, toxins, molds, yeasts, and food pathogens (e.g., salmonella). The probiotic mix binds heavy metals. Take 1 teaspoon a day. For babies, start with a few grains (mothers can dip their pinkie in the mix to feed the baby). Sensitive individuals start with ¼ teaspoon and gradually up the dosage.* 

leaky gut: The Original creates a slightly acidic pH level in the GI Tract to protect the gut membrane from pathogens like yeast. The mix produces amazingly high amounts of the short chain fatty acid butyrate, which facilitate the tightening of the gut membrane. Take 1 teaspoon daily (can take 1 teaspoon three times day during acute bouts of gastric distress).*

Digestion: Take 1 teaspoon to improve digestion, dissolve in mouth slowly. The Original in fact helps the digestion of polyphenols from fruits, berries, veggies, and greens into bioavailable shorter chains of phenolic molecules. The Original also helps digest complex carbohydrates into short chain fatty acids, important for gut health.*

Microbiome and healthy diversity: The Original has team playing organisms that help to build healthier communities in the gut.

Net Orders Checkout

Item Price Qty Total
Subtotal $0.00
Shipping
Total

Shipping Address

Shipping Methods