Original Synbiotic
Immune Booster
The Original Synbiotic Formula is the gold standard of probiotic formulas. Five pedigree ATCC probiotic lactic acid bacteria are grown for hardiness and stability. The Original is a powerfully elegant mix of prebiotic and probiotic.
Add one teaspoon to your daily routine.
- Description
- Ingredients
- Research
-
Protocol
20 billion cfu/tsp of certified strains of pedigreed probiotic with Therapeutic Foods in a synbiotic formula of L. acidophilus, B. longum, L. rhamnosus, L. plantarum, S. thermophilus and 4 grams of inulin derived from organic chicory fiber. Advanced freeze-drying technology. 120 grams/bottle. 4 grams/ tsp. Dairy free. Soy free. Gluten free. No excipients.
- Microbiome Technology creates hardy and viable pedigreed strains of L. acidophilus, B. longum, L. rhamnosus, L. plantarum, S. thermophilus.
- Original strains of lactic acid bacteria are based on ATCC prototypical strains and confirmed routinely by 16sRNA sequencing to provide highest quality probiotic material.
- The Original Strains are chosen for their strength, compatibility, safety and their 40 years of proven ability to neutralize food borne pathogens and xenobiotics.
- Strains selected to protect, counteract and neutralize dietary toxins, mutagens, carcinogens and infectious organisms.
- The contamination of food with aflatoxins is a worldwide problem. Mold mycotoxins compromise the blood-brain barrier and induce neurodegenerative processes. L rhamnosus binds AFB1 in vivo and reduces bio-absorption of the toxin from the gut. L. acidophilus and B. longum neutralize AFB1 and AFM1 by binding mechanisms. S. thermophilus reduces content of ochratoxin A.
- Mutagens cause impaired cell function, cell death or cell transformation into cancer cells. L. acidophilus, B. longum, L. rhamnosus, S. thermophilus and L. plantarum neutralize heterocyclic amines and nitrosamines, two of the most common and powerful mutagenic molecules found in our diet.
- Our home is a global environment. Infectious organisms come from all corners of the world.
- Verocytotoxin producing E. coli s0157 are emerging food borne pathogens worldwide. B. longumneutralizes this toxin.
- The collective ability of the Original probiotic organisms to protect the frontline border of our GI tract membrane from the aggressive enterovirulent pathogens is accomplished via: the production of bactercins, creation of an acid barrier, stimulation of the cell mediated immune system and protective colonization of enterocytes.
- The lactic acid bacterial strains in the Original Synbiotic Formula have demonstrated the ability to inhibit the formation of precancerous colon lesions. Numerous trials performed validate findings.
- Pure inulin, derived from chicory fiber, provides support as a Therapeutic Foods carrier and prebiotic. Provides an ideal food source for the lactic acid organisms to grow, thrive and to protect.
- In the process of fermentation, inulin produces butyric acid and therefore:
- Corrects GI permeability- establishes tight junctions.
- Inhibits colon cancer: stimulating the differentiation of stem cells.
- Improves habit of bowel regularity
- No fillers, flowing agents or excipients of any kind.
1 Teaspoon Contains:
Calories 5
Total Carbohydrate 3g
Dietary fiber 3g
Soluble fiber 3g
Proprietary Probiotic Blend 20billion CFU 3.38g
L. acidophilus
L. casei rhamnosus
L. plantarum
S. thermophilus
B. longum
Inulin (from organic chicory root)
Container: 120 grams
Immune Support
AFRC, R. F. (1989). Probiotics in man and animals. Journal of applied bacteriology, 66(5), 365-378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
Aguilar, C., Mano, M., & Eulalio, A. (2018). MicroRNAs at the Host–Bacteria Interface: Host Defense or Bacterial Offense. Trends in microbiology. Abstract
Azcarate-Peril, M.A., Sikes, M., Bruno-Barcena, J.M. (2011). The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer? Am J Physiol Gastrointest Liver Physiol, 301, G401-G424. doi:10.1152/ajpgi.00110.2011.
Bocci V. (1992). The neglected organ: Bacterial flora has a crucial immunostimulatory role. Perspectives in Biology and Medince, 35(2), 251–260. Abstract
Cianci, R., Franza, L., Schinzari, G., Rossi, E., Ianiro, G., Tortora, G., ... & Cammarota, G. (2019). The Interplay between Immunity and Microbiota at Intestinal Immunological Niche: The Case of Cancer. International journal of molecular sciences, 20(3), 501. Abstract
Dargahi, N., Johnson, J., Donkor, O., Vasiljevic, T., & Apostolopoulos, V. (2018). Immunomodulatory effects of Streptococcus thermophilus on U937 monocyte cell cultures. Journal of Functional Foods, 49, 241-249. https://doi.org/10.1016/j.jff.2018.08.038
Galdeano, C. M., Cazorla, S. I., Dumit, J. M. L., Vélez, E., & Perdigón, G. (2019). Beneficial Effects of Probiotic Consumption on the Immune System. Annals of Nutrition and Metabolism, 74(2), 115-124. Abstract
Gern, J.E. (2015). Promising candidates for allergy prevention. Journal of Allergy and Clinical Immunology, 136 (1), 23–28. Abstract
Harata, G., He, F., Takahashi, K., Hosono, A., Miyazawa, K., Yoda, K., ... & Kaminogawa, S. (2016). Human Lactobacillus strains from the intestine can suppress IgE-mediated degranulation of rat basophilic leukaemia (RBL-2H3) cells. Microorganisms, 4(4), 40. doi:10.3390/microorganisms4040040
Lecellier, C. H., Dunoyer, P., Arar, K., Lehmann-Che, J., Eyquem, S., Himber, C., ... & Voinnet, O. (2005). A cellular microRNA mediates antiviral defense in human cells. Science, 308(5721), 557-560. Article
Lilly, D. M., & Stillwell, R. H. (1965). Probiotics: growth-promoting factors produced by microorganisms. Science, 147(3659), 747-748. https://doi.org/10.1126/science.147.3659.747
Ma, F., Xu, S., Liu, X., Zhang, Q., Xu, X., Liu, M., ... & Cao, X. (2011). The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ. Nature immunology, 12(9), 861. Abstract
Madsen, K. (2006). Probiotics and the immune response. J Clin Gastroenterol, 40, 232–4. Abstract
Marshall, W.E. (2014). Bacterial ORNs, a new paradigm to prevent infection. In Weston A. Price Foundation, online Article.
Marshall, W. E. (2010). Oligoribonucleotides alert the immune system of animals to the imminence of microbial infection. U.S. Patent No. 7,678,557. Washington, DC: U.S. Patent and Trademark Office. Article
Nakata, K., Sugi, Y., Narabayashi, H., Kobayakawa, T., Nakanishi, Y., Tsuda, M., ... & Takahashi, K. (2017). Commensal microbiota-induced microRNA modulates intestinal epithelial permeability through the small GTPase ARF4. Journal of Biological Chemistry, 292(37), 15426-15433. Abstract
Nishiyama, K., Sugiyama, M., & Mukai, T. (2016). Adhesion properties of lactic acid bacteria on intestinal mucin. Microorganisms, 4(3), 34. Abstract
Parker, R. B. (1974). Probiotics, the other half of the antibiotic story. Anim Nutr Health, 29, 4-8.
Parvez, S., Malik, K.A., Kang, S., & Kim, H.Y. (2006). Probiotics and their fermented food products are beneficial for health. J Appl Microbiol. 100, 1171–85. Article
Roberfroid, M.B. (2000). Prebiotics and probiotics: Are they functional foods? Am J Clin Nutr, 71, 1682S–7S. Article
Saini, R., Saini, S., Sugandha. (2009). Probiotics: The health boosters. J Cutan Aesthet Surg, 2, 112. Letter
Salas-Jara, M. J., Ilabaca, A., Vega, M., & García, A. (2016). Biofilm forming Lactobacillus: new challenges for the development of probiotics. Microorganisms, 4(3), 35. doi:10.3390/microorganisms403003
Shmaryahu, A., Carrasco, M., & Valenzuela, P. D. (2014). Prediction of bacterial microRNAs and possible targets in human cell transcriptome. Journal of Microbiology, 52(6), 482-489. Abstract
Staedel, C., & Darfeuille, F. (2013). Micro RNA s and bacterial infection. Cellular microbiology, 15(9), 1496-1507. Abstract
Sunkavalli, U., Aguilar, C., Silva, R. J., Sharan, M., Cruz, A. R., Tawk, C., ... & Eulalio, A. (2017). Analysis of host microRNA function uncovers a role for miR-29b-2-5p in Shigella capture by filopodia. PLoS pathogens, 13(4), e1006327. Abstract
Wahid, F., Shehzad, A., Khan, T., & Kim, Y. Y. (2010). MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1803(11), 1231-1243. https://doi.org/10.1016/j.bbamcr.2010.06.01
Zhao, Y., & Lukiw, W. J. (2018). Microbiome-mediated upregulation of microRNA-146a in sporadic Alzheimer’s disease. Frontiers in neurology, 9, 145. Article
IBS: Inflammatory Bowel Support
Balakrishnan, M., & Floch, M. H. (2012). Prebiotics, probiotics and digestive health. Current Opinion in Clinical Nutrition & Metabolic Care, 15(6), 580-585. Abstract
Dimidi, E., Christodoulides, S., Scott, S. M., & Whelan, K. (2017). Mechanisms of action of probiotics and the gastrointestinal microbiota on gut motility and constipation. Advances in Nutrition, 8(3), 484-494. Article
Distrutti, E., Monaldi, L., Ricci, P., & Fiorucci, S. (2016). Gut microbiota role in irritable bowel syndrome: New therapeutic strategies. World journal of gastroenterology, 22(7), 2219. Article
Ghouri, Y. A., Richards, D. M., Rahimi, E. F., Krill, J. T., Jelinek, K. A., & DuPont, A. W. (2014). Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease. Clinical and experimental gastroenterology, 7, 473. Article
Lin, P.W., Myers, L.E., Ray, L., Song, S.C., Nasr, T.R., Berardinelli, A.J., Kundu, K., Murthy, N., Hansen, J.M., & Neish A.S. (2009). Lactobacillus rhamnosus blocks inflammatory signaling in vivo via reactive oxygen species generation. Free Radic. Biol. Med, 47, 1205–1211. doi: 10.1016/j.freeradbiomed.2009.07.033.
Martini, E., Krug, S. M., Siegmund, B., Neurath, M. F., & Becker, C. (2017). Mend your fences: the epithelial barrier and its relationship with mucosal immunity in inflammatory bowel disease. Cellular and Molecular Gastroenterology and Hepatology, 4(1), 33-46. Article
Patel, R., & DuPont, H. L. (2015). New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clinical Infectious Diseases, 60(suppl_2), S108-S121. https://doi.org/10.1093/cid/civ177
Pedersen, G. (2000). Development, validation and implementation of an in vitro model for the study of metabolic and im-mune function in normal and inflamed human co-lonic epithelium. Autoimmunity, 32, 255-263. Article
Vanderpool, C., Yan, F., & Polk, B. D. (2008). Mechanisms of probiotic action: implications for therapeutic applications in inflammatory bowel diseases. Inflammatory bowel diseases, 14(11), 1585-1596. https://doi.org/10.1002/ibd.20525
Vitetta, L., Briskey, D., Alford, H., Hall, S., & Coulson S. (2014). Probiotics, prebiotics and the gastrointestinal tract in health and disease. Inflammopharmacology, DOI: 10.1007/s10787-014-0201-4. Article
Wasilewski, A., Zielińska, M., Storr, M., & Fichna, J. (2015). Beneficial effects of probiotics, prebiotics, synbiotics, and psychobiotics in inflammatory bowel disease. Inflammatory bowel diseases, 21(7), 1674-1682. Abstract
Zhang, Y., Li, L., Guo, C., Mu, D., Feng, B., Zuo, X., & Li, Y. (2016). Effects of probiotic type, dose and treatment duration on irritable bowel syndrome diagnosed by Rome III criteria: a meta-analysis. BMC gastroenterology, 16(1), 62. Abstract
Modulating a Healthy Microbiome: Immunity, Intestinal Barrier & Brain
Arora, T., & Bäckhed, F. (2016). The gut microbiota and metabolic disease: current understanding and future perspectives. Journal of internal medicine, 280(4), 339-349. Article
Blackwood, B. P., Yuan, C. Y., Wood, D. R., Nicolas, J. D., Grothaus, J. S., & Hunter, C. J. (2017). Probiotic Lactobacillus species strengthen intestinal barrier function and tight junction integrity in experimental necrotizing enterocolitis. Journal of probiotics & health, 5(1). Article
Bosscher, D., Breynaert, A., Pieters, L., & Hermans, N. (2009). Food-based strategies to modulate the composition of the microbiota and their associated health effects. Journal of physiology and pharmacology/Polish Physiological Society.-Kraków, 1991, currens, 60(S: 6), 5-11. Article
Bron, P. A., Kleerebezem, M., Brummer, R. J., Cani, P. D., Mercenier, A., MacDonald, T. T., ... & Wells, J. M. (2017). Can probiotics modulate human disease by impacting intestinal barrier function?. British Journal of Nutrition, 117(1), 93-107. Abstract
Cani PD, Delzenne NM. (2011).The gut microbiome as therapeutic target. Pharmacol Ther, 130(2), 202-12.DOI: 10.1016/j.pharmthera.2011.01.012
Choudhury, T. G., & Kamilya, D. (2018). Paraprobiotics: an aquaculture perspective. Reviews in Aquaculture. Abstract
de Vos, P., Mujagic, Z., de Haan, B. J., Siezen, R. J., Bron, P. A., Meijerink, M., ... & Troost, F. J. (2017). Lactobacillus plantarum Strains Can Enhance Human Mucosal and Systemic Immunity and Prevent Non-steroidal Anti-inflammatory Drug Induced Reduction in T Regulatory Cells. Frontiers in Immunology, 8, 1000. DOI:
De Vrese, M., & Schrezenmeir, J. (2008). Probiotics, prebiotics, and synbiotics. Adv. Biochem. Eng. Biotechnol, 111, 1–66. Abstract
Dinan, T. G., & Cryan, J. F. (2017). Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. The Journal of physiology, 595(2), 489-503. Article
Gibson, G.R., Probert, H.M., van Loo, J.A.E., & Roberfroid, M.B. (2004). Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev, 17, 257–259. Abstract
Gibson, G.R., & Roberfroid, M.B. (1995). Dietary modulation of the colonic microbiota: Introducing the concept of prebiotics. J. Nutr, 125, 1401–1412. Abstract
Hu, S., Wang, L., & Jiang, Z. (2017). Dietary Additive Probiotics Modulation of the Intestinal Microbiota. Protein and peptide letters, 24(5), 382-387. DOI:10.2174/0929866524666170223143615
Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N., & Fakiri, E. M. (2013). Health benefits of probiotics: a review. ISRN nutrition, 2013. http://dx.doi.org/10.5402/2013/481651
Macfarlane, S. M. G. T., Macfarlane, G. T., & Cummings, J. T. (2006). Prebiotics in the gastrointestinal tract. Alimentary pharmacology & therapeutics, 24(5), 701-714. Article
Maguire, M., & Maguire, G. (2019). Gut dysbiosis, leaky gut, and intestinal epithelial proliferation in neurological disorders: towards the development of a new therapeutic using amino acids, prebiotics, probiotics, and postbiotics. Reviews in the Neurosciences, 30(2), 179-201. Article
Manzoni, P., Mostert, M., Leonessa, M. L., Priolo, C., Farina, D., Monetti, C., ... & Gomirato, G. (2006). Oral supplementation with Lactobacillus casei subspecies rhamnosus prevents enteric colonization by Candida species in preterm neonates: a randomized study. Clinical infectious diseases, 42(12), 1735-1742. Article
Mujagic, Z., De Vos, P., Boekschoten, M. V., Govers, C., Pieters, H. J. H., De Wit, N. J., ... & Troost, F. J. (2017). The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; a randomized double-blind placebo controlled trial. Scientific reports, 7, 40128. DOI:10.1038/srep40128
Nishiyama, K., Sugiyama, M., & Mukai, T. (2016). Adhesion properties of lactic acid bacteria on intestinal mucin. Microorganisms, 4(3), 34. Abstract
Patel, R., & DuPont, H. L. (2015). New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clinical Infectious Diseases, 60(suppl_2), S108-S121. Abstract
Roberfroid M. (2007). Prebiotics: The concept revisited. J. Nutr, 137, 830–837. Article
Roberfroid, M. B. (2002). Functional foods: concepts and application to inulin and oligofructose. British Journal of Nutrition, 87(S2), S139-S143. https://doi.org/10.1079/BJN/2002529
Sirisinha, S. (2016). The potential impact of gut microbiota on your health: Current status and future challenges. Asian Pac J Allergy Immunol, 34(4), 249-264. Article
Thomas, L. V., Suzuki, K., & Zhao, J. (2015). Probiotics: a proactive approach to health. A symposium report. British Journal of Nutrition, 114(S1), S1-S15. Abstract
Tufarelli, V., & Laudadio, V. (2016). An overview on the functional food concept: prospectives and applied researches in probiotics, prebiotics and synbiotics. J Exp Bioland Agric Sci, 4(3), 273-8. Article
Tsilingiri, K., & Rescigno, M. (2012). Postbiotics: what else?. Beneficial microbes, 4(1), 101-107. Abstract
Vitetta L., Sali A. (2008). Probiotics, prebiotics and gastrointestinal health. Med. Today, 9, 65–70. Article
Yin, X., Lee, B., Zaragoza, J., & Marco, M. L. (2017). Dietary perturbations alter the ecological significance of ingested Lactobacillus plantarum in the digestive tract. Scientific reports, 7(1), 7267. Abstract
Babies and Young Children’s Microbiome
Amenyogbe, N., Kollmann, T. R., & Ben-Othman, R. (2017). Early-life host–microbiome interphase: the key frontier for immune development. Frontiers in pediatrics, 5, 111. DOI:10.3389/fped.2017.00111
Blanton, L. V., Barratt, M. J., Charbonneau, M. R., Ahmed, T., & Gordon, J. I. (2016). Childhood undernutrition, the gut microbiota, and microbiota-directed therapeutics. Science, 352(6293), 1533-1533. DOI: 10.1126/science.aad9359
Cox, M. J., Huang, Y. J., Fujimura, K. E., Liu, J. T., McKean, M., Boushey, H. A., ... & Lynch, S. V. (2010). Lactobacillus casei abundance is associated with profound shifts in the infant gut microbiome. PLoS One, 5(1), e8745. Article
Emami, C. N., Petrosyan, M., Giuliani, S., Williams, M., Hunter, C., Prasadarao, N. V., & Ford, H. R. (2009). Role of the host defense system and intestinal microbial flora in the pathogenesis of necrotizing enterocolitis. Surgical infections, 10(5), 407-417. Abstract
Goldenberg, J. Z., Lytvyn, L., Steurich, J., Parkin, P., Mahant, S., & Johnston, B. C. (2015). Probiotics for the prevention of pediatric antibiotic‐associated diarrhea. The Cochrane Library. Abstract
Hodzic, Z., Bolock, A. M., & Good, M. (2017). The role of mucosal immunity in the pathogenesis of necrotizing enterocolitis. Frontiers in pediatrics, 5, 40.Article
Hayes, S. R., & Vargas, A. J. (2016). Probiotics for the Prevention of Pediatric Antibiotic-Associated Diarrhea. Explore: The Journal of Science and Healing, 12(6), 463-466. https://doi.org/10.1016/j.explore.2016.08.015
Kang, D. W., Ilhan, Z. E., Isern, N. G., Hoyt, D. W., Howsmon, D. P., Shaffer, M., ... & Krajmalnik-Brown, R. (2018). Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe, 49, 121-131. Article
Patel, R.M., & Denning, P.W. (2013). Therapeutic use of prebiotics, probiotics, and postbiotics to prevent necrotizing enterocolitis: What is the current evidence? Clin Perinatol, 40(1), 11-25. Article
Shankar, V., Gouda, M., Moncivaiz, J., Gordon, A., Reo, N. V., Hussein, L., & Paliy, O. (2017). Differences in gut metabolites and microbial composition and functions between Egyptian and US children are consistent with their diets. Msystems, 2(1), e00169-16. Article
Subramanian, S., Huq, S., Yatsunenko, T., Haque, R., Mahfuz, M., Alam, M. A., ... & Barratt, M. J. (2014). Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature, 510(7505), 417. Abstract
Wegh, C. A., Schoterman, M. H., Vaughan, E. E., Belzer, C., & Benninga, M. A. (2017). The effect of fiber and prebiotics on children’s gastrointestinal disorders and microbiome. Expert review of gastroenterology & hepatology, 11(11), 1031-1045. https://doi.org/10.1080/17474124.2017.1359539
Zhang, M., Ma, W., Zhang, J., He, Y., & Wang, J. (2018). Analysis of gut microbiota profiles and microbe-disease associations in children with autism spectrum disorders in China. Scientific reports, 8(1), 13981. Article
Metabolic Support: Cardiovascular, Diabetes, Cancer, and Weight
Cani, P.D., Pssemiers, S., Van de Wiele, T., Guiot, Y., Everad, A., Rottier, O…. Delzenne, N.M. (2009). Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2 driven improvement of gut permeability. Gut, 58(8), 1091-1103. DOI:10.1136/gut.2008.165886
Cani, P. D. (2019). Severe obesity and gut microbiota: does bariatric surgery really reset the system?. Gut, 68(1), 5-6. Abstract
Cani, P. D., & Delzenne, N. M. (2009). The role of the gut microbiota in energy metabolism and metabolic disease. Current pharmaceutical design, 15(13), 1546-1558. Article
Cani, P. D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A. M., Delzenne, N. M., & Burcelin, R. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes, 57(6), 1470-1481. Article
Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., ... & Waget, A. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761-1772. Article
Cani, P. D., Neyrinck, A. M., Fava, F., Knauf, C., Burcelin, R. G., Tuohy, K. M., ... & Delzenne, N. M. (2007). Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia, 50(11), 2374-2383. Article
Druat, C., Alligier, M., Salazar, N., Neyrinck, A.M., & Delzenne, N.M. (2014). Modulation of the gut microbiota by nutrients with prebiotic and probiotic properties. Adv Nur, 5(5), 624S-633S. DOI:10.3945/an.114.005835
Everard, A., & Cani, P. (2013). Diabetes, obesity and gut microbiota. Best Pract. Res. Clin. Gastroenterol, 27, 73–83. Article
Falcinelli, S., Rodiles, A., Hatef, A., Picchietti, S., Cossignani, L., Merrifield, D. L., ... & Carnevali, O. (2017). Dietary lipid content reorganizes gut microbiota and probiotic L. rhamnosus attenuates obesity and enhances catabolic hormonal milieu in zebrafish. Scientific reports, 7(1), 5512. Article
Frazier, T. H., DiBaise, J. K., & McClain, C. J. (2011). Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. Journal of Parenteral and Enteral Nutrition, 35(5_suppl), 14S-20S. Article
Han, J. L., & Lin, H. L. (2014). Intestinal microbiota and type 2 diabetes: from mechanism insights to therapeutic perspective. World journal of gastroenterology: WJG, 20(47), 17737. Article
Korkmaz, O. A., Sadi, G., Kocabas, A., Yildirim, O. G., Sumlu, E., Koca, H. B., ... & Bilgehan, M. Lactobacillus helveticus and Lactobacillus plantarum modulate renal antioxidant status in a rat model of fructose-induced metabolic syndrome. Article
Macfarlane, S., Cleary, S., Bahrami, B., Reynolds, N., & Macfarlane, G. T. (2013). Synbiotic consumption changes the metabolism and composition of the gut microbiota in older people and modifies inflammatory processes: a randomised, double‐blind, placebo‐controlled crossover study. Alimentary pharmacology & therapeutics, 38(7), 804-816. Article
Marques, F. Z., Mackay, C. R., & Kaye, D. M. (2018). Beyond gut feelings: how the gut microbiota regulates blood pressure. Nature Reviews Cardiology, 15(1), 20. Article
Qin, Y., Roberts, J. D., Grimm, S. A., Lih, F. B., Deterding, L. J., Li, R., ... & Wade, P. A. (2018). An obesity-associated gut microbiome reprograms the intestinal epigenome and leads to altered colonic gene expression. Genome biology, 19(1), 7. Article
Roberfroid, M., Gibson, G. R., Hoyles, L., McCartney, A. L., Rastall, R., Rowland, I., ... & Guarner, F. (2010). Prebiotic effects: metabolic and health benefits. British Journal of Nutrition, 104(S2), S1-S63. Abstract
Serino, M., Blasco-Baque, V., Nicolas, S., & Burcelin, R. (2014). Managing the manager: gut microbes, stem cells and metabolism. Diabetes & metabolism, 40(3), 186-190. Abstract
Yan Q, Li X, Feng B. (2015). The efficacy and safety of probiotics intervention in preventing conversion of impaired glucose tolerance to diabetes: study protocol for a randomized, double-blinded, placebo controlled trial of the Probiotics Prevention Diabetes Programme (PPDP). BMC Endocr Discord; 15(1): 74. Article
Cardiovascular and Fatty Liver Support
Álvarez-Mercado, A. I., Navarro-Oliveros, M., Robles-Sánchez, C., Plaza-Díaz, J., Sáez-Lara, M. J., Muñoz-Quezada, S., ... & Abadía-Molina, F. (2019). Microbial Population Changes and Their Relationship with Human Health and Disease. Microorganisms, 7(3), 68. Article
Delzenne, N. M., Knudsen, C., Beaumont, M., Rodriguez, J., Neyrinck, A. M., & Bindels, L. B. (2019). Contribution of the gut microbiota to the regulation of host metabolism and energy balance: a focus on the gut–liver axis. Proceedings of the Nutrition Society, 1-10. Abstract
Fernandes, R., do Rosario, V. A., Mocellin, M. C., Kuntz, M. G., & Trindade, E. B. (2017). Effects of inulin-type fructans, galacto-oligosaccharides and related synbiotics on inflammatory markers in adult patients with overweight or obesity: A systematic review. Clinical Nutrition, 36(5), 1197-1206. Abstract
Iacono, A., Raso, G. M., Canani, R. B., Calignano, A., & Meli, R. (2011). Probiotics as an emerging therapeutic strategy to treat NAFLD: focus on molecular and biochemical mechanisms. The Journal of nutritional biochemistry, 22(8), 699-711. Article
Johnson-Henry et al. (2008). Lactobacillus rhamnosus strain GG prevents enterohemorrhagic Escherichia coli 0157:H7- Induced changes in epithelial barrier function. Infect Immun; 76:1340-1348. Abstract
Lee et al. (2006). Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim Biophys Acta; 1761: 736-744. Article
Safari, Z., & Gérard, P. (2019). The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cellular and Molecular Life Sciences, 1-18. Abstract
Shalitin, S., Battelino, T., & Moreno, L. A. (2019). Obesity, Metabolic Syndrome and Nutrition. Nutrition and Growth: Yearbook 2019, 119, 13-42. Chapter
Wang et al. (2009). Effects of Lactobacillus plantarum MA2 isolated from Tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol diet. Appl Microbiol Biotechnol; 84: 341-347. Abstract
Yadav et al. (2007). Antidiabetic effect of probiotic dahl containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition; 23: 62-68. Article
Yari, Z., & Hekmatdoost, A. (2019). Dietary Interventions in Fatty Liver. In Dietary Interventions in Gastrointestinal Diseases (pp. 245-255). Academic Press. Abstract
ORIGINAL — The Original is designed as a foundational probiotic formula for the whole family.
Hard working probiotic: The Original is designed to handle and neutralize carcinogens, toxins, molds, yeasts, and food pathogens (e.g., salmonella). The probiotic mix binds heavy metals. Take 1 teaspoon a day. For babies, start with a few grains (mothers can dip their pinkie in the mix to feed the baby). Sensitive individuals start with ¼ teaspoon and gradually up the dosage.*
leaky gut: The Original creates a slightly acidic pH level in the GI Tract to protect the gut membrane from pathogens like yeast. The mix produces amazingly high amounts of the short chain fatty acid butyrate, which facilitate the tightening of the gut membrane. Take 1 teaspoon daily (can take 1 teaspoon three times day during acute bouts of gastric distress).*
Digestion: Take 1 teaspoon to improve digestion, dissolve in mouth slowly. The Original in fact helps the digestion of polyphenols from fruits, berries, veggies, and greens into bioavailable shorter chains of phenolic molecules. The Original also helps digest complex carbohydrates into short chain fatty acids, important for gut health.*
Microbiome and healthy diversity: The Original has team playing organisms that help to build healthier communities in the gut.
Description
20 billion cfu/tsp of certified strains of pedigreed probiotic with Therapeutic Foods in a synbiotic formula of L. acidophilus, B. longum, L. rhamnosus, L. plantarum, S. thermophilus and 4 grams of inulin derived from organic chicory fiber. Advanced freeze-drying technology. 120 grams/bottle. 4 grams/ tsp. Dairy free. Soy free. Gluten free. No excipients.
- Microbiome Technology creates hardy and viable pedigreed strains of L. acidophilus, B. longum, L. rhamnosus, L. plantarum, S. thermophilus.
- Original strains of lactic acid bacteria are based on ATCC prototypical strains and confirmed routinely by 16sRNA sequencing to provide highest quality probiotic material.
- The Original Strains are chosen for their strength, compatibility, safety and their 40 years of proven ability to neutralize food borne pathogens and xenobiotics.
- Strains selected to protect, counteract and neutralize dietary toxins, mutagens, carcinogens and infectious organisms.
- The contamination of food with aflatoxins is a worldwide problem. Mold mycotoxins compromise the blood-brain barrier and induce neurodegenerative processes. L rhamnosus binds AFB1 in vivo and reduces bio-absorption of the toxin from the gut. L. acidophilus and B. longum neutralize AFB1 and AFM1 by binding mechanisms. S. thermophilus reduces content of ochratoxin A.
- Mutagens cause impaired cell function, cell death or cell transformation into cancer cells. L. acidophilus, B. longum, L. rhamnosus, S. thermophilus and L. plantarum neutralize heterocyclic amines and nitrosamines, two of the most common and powerful mutagenic molecules found in our diet.
- Our home is a global environment. Infectious organisms come from all corners of the world.
- Verocytotoxin producing E. coli s0157 are emerging food borne pathogens worldwide. B. longumneutralizes this toxin.
- The collective ability of the Original probiotic organisms to protect the frontline border of our GI tract membrane from the aggressive enterovirulent pathogens is accomplished via: the production of bactercins, creation of an acid barrier, stimulation of the cell mediated immune system and protective colonization of enterocytes.
- The lactic acid bacterial strains in the Original Synbiotic Formula have demonstrated the ability to inhibit the formation of precancerous colon lesions. Numerous trials performed validate findings.
- Pure inulin, derived from chicory fiber, provides support as a Therapeutic Foods carrier and prebiotic. Provides an ideal food source for the lactic acid organisms to grow, thrive and to protect.
- In the process of fermentation, inulin produces butyric acid and therefore:
- Corrects GI permeability- establishes tight junctions.
- Inhibits colon cancer: stimulating the differentiation of stem cells.
- Improves habit of bowel regularity
- No fillers, flowing agents or excipients of any kind.
Ingredients
1 Teaspoon Contains:
Calories 5
Total Carbohydrate 3g
Dietary fiber 3g
Soluble fiber 3g
Proprietary Probiotic Blend 20billion CFU 3.38g
L. acidophilus
L. casei rhamnosus
L. plantarum
S. thermophilus
B. longum
Inulin (from organic chicory root)
Container: 120 grams
Research
Immune Support
AFRC, R. F. (1989). Probiotics in man and animals. Journal of applied bacteriology, 66(5), 365-378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
Aguilar, C., Mano, M., & Eulalio, A. (2018). MicroRNAs at the Host–Bacteria Interface: Host Defense or Bacterial Offense. Trends in microbiology. Abstract
Azcarate-Peril, M.A., Sikes, M., Bruno-Barcena, J.M. (2011). The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer? Am J Physiol Gastrointest Liver Physiol, 301, G401-G424. doi:10.1152/ajpgi.00110.2011.
Bocci V. (1992). The neglected organ: Bacterial flora has a crucial immunostimulatory role. Perspectives in Biology and Medince, 35(2), 251–260. Abstract
Cianci, R., Franza, L., Schinzari, G., Rossi, E., Ianiro, G., Tortora, G., ... & Cammarota, G. (2019). The Interplay between Immunity and Microbiota at Intestinal Immunological Niche: The Case of Cancer. International journal of molecular sciences, 20(3), 501. Abstract
Dargahi, N., Johnson, J., Donkor, O., Vasiljevic, T., & Apostolopoulos, V. (2018). Immunomodulatory effects of Streptococcus thermophilus on U937 monocyte cell cultures. Journal of Functional Foods, 49, 241-249. https://doi.org/10.1016/j.jff.2018.08.038
Galdeano, C. M., Cazorla, S. I., Dumit, J. M. L., Vélez, E., & Perdigón, G. (2019). Beneficial Effects of Probiotic Consumption on the Immune System. Annals of Nutrition and Metabolism, 74(2), 115-124. Abstract
Gern, J.E. (2015). Promising candidates for allergy prevention. Journal of Allergy and Clinical Immunology, 136 (1), 23–28. Abstract
Harata, G., He, F., Takahashi, K., Hosono, A., Miyazawa, K., Yoda, K., ... & Kaminogawa, S. (2016). Human Lactobacillus strains from the intestine can suppress IgE-mediated degranulation of rat basophilic leukaemia (RBL-2H3) cells. Microorganisms, 4(4), 40. doi:10.3390/microorganisms4040040
Lecellier, C. H., Dunoyer, P., Arar, K., Lehmann-Che, J., Eyquem, S., Himber, C., ... & Voinnet, O. (2005). A cellular microRNA mediates antiviral defense in human cells. Science, 308(5721), 557-560. Article
Lilly, D. M., & Stillwell, R. H. (1965). Probiotics: growth-promoting factors produced by microorganisms. Science, 147(3659), 747-748. https://doi.org/10.1126/science.147.3659.747
Ma, F., Xu, S., Liu, X., Zhang, Q., Xu, X., Liu, M., ... & Cao, X. (2011). The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ. Nature immunology, 12(9), 861. Abstract
Madsen, K. (2006). Probiotics and the immune response. J Clin Gastroenterol, 40, 232–4. Abstract
Marshall, W.E. (2014). Bacterial ORNs, a new paradigm to prevent infection. In Weston A. Price Foundation, online Article.
Marshall, W. E. (2010). Oligoribonucleotides alert the immune system of animals to the imminence of microbial infection. U.S. Patent No. 7,678,557. Washington, DC: U.S. Patent and Trademark Office. Article
Nakata, K., Sugi, Y., Narabayashi, H., Kobayakawa, T., Nakanishi, Y., Tsuda, M., ... & Takahashi, K. (2017). Commensal microbiota-induced microRNA modulates intestinal epithelial permeability through the small GTPase ARF4. Journal of Biological Chemistry, 292(37), 15426-15433. Abstract
Nishiyama, K., Sugiyama, M., & Mukai, T. (2016). Adhesion properties of lactic acid bacteria on intestinal mucin. Microorganisms, 4(3), 34. Abstract
Parker, R. B. (1974). Probiotics, the other half of the antibiotic story. Anim Nutr Health, 29, 4-8.
Parvez, S., Malik, K.A., Kang, S., & Kim, H.Y. (2006). Probiotics and their fermented food products are beneficial for health. J Appl Microbiol. 100, 1171–85. Article
Roberfroid, M.B. (2000). Prebiotics and probiotics: Are they functional foods? Am J Clin Nutr, 71, 1682S–7S. Article
Saini, R., Saini, S., Sugandha. (2009). Probiotics: The health boosters. J Cutan Aesthet Surg, 2, 112. Letter
Salas-Jara, M. J., Ilabaca, A., Vega, M., & García, A. (2016). Biofilm forming Lactobacillus: new challenges for the development of probiotics. Microorganisms, 4(3), 35. doi:10.3390/microorganisms403003
Shmaryahu, A., Carrasco, M., & Valenzuela, P. D. (2014). Prediction of bacterial microRNAs and possible targets in human cell transcriptome. Journal of Microbiology, 52(6), 482-489. Abstract
Staedel, C., & Darfeuille, F. (2013). Micro RNA s and bacterial infection. Cellular microbiology, 15(9), 1496-1507. Abstract
Sunkavalli, U., Aguilar, C., Silva, R. J., Sharan, M., Cruz, A. R., Tawk, C., ... & Eulalio, A. (2017). Analysis of host microRNA function uncovers a role for miR-29b-2-5p in Shigella capture by filopodia. PLoS pathogens, 13(4), e1006327. Abstract
Wahid, F., Shehzad, A., Khan, T., & Kim, Y. Y. (2010). MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1803(11), 1231-1243. https://doi.org/10.1016/j.bbamcr.2010.06.01
Zhao, Y., & Lukiw, W. J. (2018). Microbiome-mediated upregulation of microRNA-146a in sporadic Alzheimer’s disease. Frontiers in neurology, 9, 145. Article
IBS: Inflammatory Bowel Support
Balakrishnan, M., & Floch, M. H. (2012). Prebiotics, probiotics and digestive health. Current Opinion in Clinical Nutrition & Metabolic Care, 15(6), 580-585. Abstract
Dimidi, E., Christodoulides, S., Scott, S. M., & Whelan, K. (2017). Mechanisms of action of probiotics and the gastrointestinal microbiota on gut motility and constipation. Advances in Nutrition, 8(3), 484-494. Article
Distrutti, E., Monaldi, L., Ricci, P., & Fiorucci, S. (2016). Gut microbiota role in irritable bowel syndrome: New therapeutic strategies. World journal of gastroenterology, 22(7), 2219. Article
Ghouri, Y. A., Richards, D. M., Rahimi, E. F., Krill, J. T., Jelinek, K. A., & DuPont, A. W. (2014). Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease. Clinical and experimental gastroenterology, 7, 473. Article
Lin, P.W., Myers, L.E., Ray, L., Song, S.C., Nasr, T.R., Berardinelli, A.J., Kundu, K., Murthy, N., Hansen, J.M., & Neish A.S. (2009). Lactobacillus rhamnosus blocks inflammatory signaling in vivo via reactive oxygen species generation. Free Radic. Biol. Med, 47, 1205–1211. doi: 10.1016/j.freeradbiomed.2009.07.033.
Martini, E., Krug, S. M., Siegmund, B., Neurath, M. F., & Becker, C. (2017). Mend your fences: the epithelial barrier and its relationship with mucosal immunity in inflammatory bowel disease. Cellular and Molecular Gastroenterology and Hepatology, 4(1), 33-46. Article
Patel, R., & DuPont, H. L. (2015). New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clinical Infectious Diseases, 60(suppl_2), S108-S121. https://doi.org/10.1093/cid/civ177
Pedersen, G. (2000). Development, validation and implementation of an in vitro model for the study of metabolic and im-mune function in normal and inflamed human co-lonic epithelium. Autoimmunity, 32, 255-263. Article
Vanderpool, C., Yan, F., & Polk, B. D. (2008). Mechanisms of probiotic action: implications for therapeutic applications in inflammatory bowel diseases. Inflammatory bowel diseases, 14(11), 1585-1596. https://doi.org/10.1002/ibd.20525
Vitetta, L., Briskey, D., Alford, H., Hall, S., & Coulson S. (2014). Probiotics, prebiotics and the gastrointestinal tract in health and disease. Inflammopharmacology, DOI: 10.1007/s10787-014-0201-4. Article
Wasilewski, A., Zielińska, M., Storr, M., & Fichna, J. (2015). Beneficial effects of probiotics, prebiotics, synbiotics, and psychobiotics in inflammatory bowel disease. Inflammatory bowel diseases, 21(7), 1674-1682. Abstract
Zhang, Y., Li, L., Guo, C., Mu, D., Feng, B., Zuo, X., & Li, Y. (2016). Effects of probiotic type, dose and treatment duration on irritable bowel syndrome diagnosed by Rome III criteria: a meta-analysis. BMC gastroenterology, 16(1), 62. Abstract
Modulating a Healthy Microbiome: Immunity, Intestinal Barrier & Brain
Arora, T., & Bäckhed, F. (2016). The gut microbiota and metabolic disease: current understanding and future perspectives. Journal of internal medicine, 280(4), 339-349. Article
Blackwood, B. P., Yuan, C. Y., Wood, D. R., Nicolas, J. D., Grothaus, J. S., & Hunter, C. J. (2017). Probiotic Lactobacillus species strengthen intestinal barrier function and tight junction integrity in experimental necrotizing enterocolitis. Journal of probiotics & health, 5(1). Article
Bosscher, D., Breynaert, A., Pieters, L., & Hermans, N. (2009). Food-based strategies to modulate the composition of the microbiota and their associated health effects. Journal of physiology and pharmacology/Polish Physiological Society.-Kraków, 1991, currens, 60(S: 6), 5-11. Article
Bron, P. A., Kleerebezem, M., Brummer, R. J., Cani, P. D., Mercenier, A., MacDonald, T. T., ... & Wells, J. M. (2017). Can probiotics modulate human disease by impacting intestinal barrier function?. British Journal of Nutrition, 117(1), 93-107. Abstract
Cani PD, Delzenne NM. (2011).The gut microbiome as therapeutic target. Pharmacol Ther, 130(2), 202-12.DOI: 10.1016/j.pharmthera.2011.01.012
Choudhury, T. G., & Kamilya, D. (2018). Paraprobiotics: an aquaculture perspective. Reviews in Aquaculture. Abstract
de Vos, P., Mujagic, Z., de Haan, B. J., Siezen, R. J., Bron, P. A., Meijerink, M., ... & Troost, F. J. (2017). Lactobacillus plantarum Strains Can Enhance Human Mucosal and Systemic Immunity and Prevent Non-steroidal Anti-inflammatory Drug Induced Reduction in T Regulatory Cells. Frontiers in Immunology, 8, 1000. DOI:
De Vrese, M., & Schrezenmeir, J. (2008). Probiotics, prebiotics, and synbiotics. Adv. Biochem. Eng. Biotechnol, 111, 1–66. Abstract
Dinan, T. G., & Cryan, J. F. (2017). Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. The Journal of physiology, 595(2), 489-503. Article
Gibson, G.R., Probert, H.M., van Loo, J.A.E., & Roberfroid, M.B. (2004). Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev, 17, 257–259. Abstract
Gibson, G.R., & Roberfroid, M.B. (1995). Dietary modulation of the colonic microbiota: Introducing the concept of prebiotics. J. Nutr, 125, 1401–1412. Abstract
Hu, S., Wang, L., & Jiang, Z. (2017). Dietary Additive Probiotics Modulation of the Intestinal Microbiota. Protein and peptide letters, 24(5), 382-387. DOI:10.2174/0929866524666170223143615
Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N., & Fakiri, E. M. (2013). Health benefits of probiotics: a review. ISRN nutrition, 2013. http://dx.doi.org/10.5402/2013/481651
Macfarlane, S. M. G. T., Macfarlane, G. T., & Cummings, J. T. (2006). Prebiotics in the gastrointestinal tract. Alimentary pharmacology & therapeutics, 24(5), 701-714. Article
Maguire, M., & Maguire, G. (2019). Gut dysbiosis, leaky gut, and intestinal epithelial proliferation in neurological disorders: towards the development of a new therapeutic using amino acids, prebiotics, probiotics, and postbiotics. Reviews in the Neurosciences, 30(2), 179-201. Article
Manzoni, P., Mostert, M., Leonessa, M. L., Priolo, C., Farina, D., Monetti, C., ... & Gomirato, G. (2006). Oral supplementation with Lactobacillus casei subspecies rhamnosus prevents enteric colonization by Candida species in preterm neonates: a randomized study. Clinical infectious diseases, 42(12), 1735-1742. Article
Mujagic, Z., De Vos, P., Boekschoten, M. V., Govers, C., Pieters, H. J. H., De Wit, N. J., ... & Troost, F. J. (2017). The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; a randomized double-blind placebo controlled trial. Scientific reports, 7, 40128. DOI:10.1038/srep40128
Nishiyama, K., Sugiyama, M., & Mukai, T. (2016). Adhesion properties of lactic acid bacteria on intestinal mucin. Microorganisms, 4(3), 34. Abstract
Patel, R., & DuPont, H. L. (2015). New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clinical Infectious Diseases, 60(suppl_2), S108-S121. Abstract
Roberfroid M. (2007). Prebiotics: The concept revisited. J. Nutr, 137, 830–837. Article
Roberfroid, M. B. (2002). Functional foods: concepts and application to inulin and oligofructose. British Journal of Nutrition, 87(S2), S139-S143. https://doi.org/10.1079/BJN/2002529
Sirisinha, S. (2016). The potential impact of gut microbiota on your health: Current status and future challenges. Asian Pac J Allergy Immunol, 34(4), 249-264. Article
Thomas, L. V., Suzuki, K., & Zhao, J. (2015). Probiotics: a proactive approach to health. A symposium report. British Journal of Nutrition, 114(S1), S1-S15. Abstract
Tufarelli, V., & Laudadio, V. (2016). An overview on the functional food concept: prospectives and applied researches in probiotics, prebiotics and synbiotics. J Exp Bioland Agric Sci, 4(3), 273-8. Article
Tsilingiri, K., & Rescigno, M. (2012). Postbiotics: what else?. Beneficial microbes, 4(1), 101-107. Abstract
Vitetta L., Sali A. (2008). Probiotics, prebiotics and gastrointestinal health. Med. Today, 9, 65–70. Article
Yin, X., Lee, B., Zaragoza, J., & Marco, M. L. (2017). Dietary perturbations alter the ecological significance of ingested Lactobacillus plantarum in the digestive tract. Scientific reports, 7(1), 7267. Abstract
Babies and Young Children’s Microbiome
Amenyogbe, N., Kollmann, T. R., & Ben-Othman, R. (2017). Early-life host–microbiome interphase: the key frontier for immune development. Frontiers in pediatrics, 5, 111. DOI:10.3389/fped.2017.00111
Blanton, L. V., Barratt, M. J., Charbonneau, M. R., Ahmed, T., & Gordon, J. I. (2016). Childhood undernutrition, the gut microbiota, and microbiota-directed therapeutics. Science, 352(6293), 1533-1533. DOI: 10.1126/science.aad9359
Cox, M. J., Huang, Y. J., Fujimura, K. E., Liu, J. T., McKean, M., Boushey, H. A., ... & Lynch, S. V. (2010). Lactobacillus casei abundance is associated with profound shifts in the infant gut microbiome. PLoS One, 5(1), e8745. Article
Emami, C. N., Petrosyan, M., Giuliani, S., Williams, M., Hunter, C., Prasadarao, N. V., & Ford, H. R. (2009). Role of the host defense system and intestinal microbial flora in the pathogenesis of necrotizing enterocolitis. Surgical infections, 10(5), 407-417. Abstract
Goldenberg, J. Z., Lytvyn, L., Steurich, J., Parkin, P., Mahant, S., & Johnston, B. C. (2015). Probiotics for the prevention of pediatric antibiotic‐associated diarrhea. The Cochrane Library. Abstract
Hodzic, Z., Bolock, A. M., & Good, M. (2017). The role of mucosal immunity in the pathogenesis of necrotizing enterocolitis. Frontiers in pediatrics, 5, 40.Article
Hayes, S. R., & Vargas, A. J. (2016). Probiotics for the Prevention of Pediatric Antibiotic-Associated Diarrhea. Explore: The Journal of Science and Healing, 12(6), 463-466. https://doi.org/10.1016/j.explore.2016.08.015
Kang, D. W., Ilhan, Z. E., Isern, N. G., Hoyt, D. W., Howsmon, D. P., Shaffer, M., ... & Krajmalnik-Brown, R. (2018). Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe, 49, 121-131. Article
Patel, R.M., & Denning, P.W. (2013). Therapeutic use of prebiotics, probiotics, and postbiotics to prevent necrotizing enterocolitis: What is the current evidence? Clin Perinatol, 40(1), 11-25. Article
Shankar, V., Gouda, M., Moncivaiz, J., Gordon, A., Reo, N. V., Hussein, L., & Paliy, O. (2017). Differences in gut metabolites and microbial composition and functions between Egyptian and US children are consistent with their diets. Msystems, 2(1), e00169-16. Article
Subramanian, S., Huq, S., Yatsunenko, T., Haque, R., Mahfuz, M., Alam, M. A., ... & Barratt, M. J. (2014). Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature, 510(7505), 417. Abstract
Wegh, C. A., Schoterman, M. H., Vaughan, E. E., Belzer, C., & Benninga, M. A. (2017). The effect of fiber and prebiotics on children’s gastrointestinal disorders and microbiome. Expert review of gastroenterology & hepatology, 11(11), 1031-1045. https://doi.org/10.1080/17474124.2017.1359539
Zhang, M., Ma, W., Zhang, J., He, Y., & Wang, J. (2018). Analysis of gut microbiota profiles and microbe-disease associations in children with autism spectrum disorders in China. Scientific reports, 8(1), 13981. Article
Metabolic Support: Cardiovascular, Diabetes, Cancer, and Weight
Cani, P.D., Pssemiers, S., Van de Wiele, T., Guiot, Y., Everad, A., Rottier, O…. Delzenne, N.M. (2009). Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2 driven improvement of gut permeability. Gut, 58(8), 1091-1103. DOI:10.1136/gut.2008.165886
Cani, P. D. (2019). Severe obesity and gut microbiota: does bariatric surgery really reset the system?. Gut, 68(1), 5-6. Abstract
Cani, P. D., & Delzenne, N. M. (2009). The role of the gut microbiota in energy metabolism and metabolic disease. Current pharmaceutical design, 15(13), 1546-1558. Article
Cani, P. D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A. M., Delzenne, N. M., & Burcelin, R. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes, 57(6), 1470-1481. Article
Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., ... & Waget, A. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761-1772. Article
Cani, P. D., Neyrinck, A. M., Fava, F., Knauf, C., Burcelin, R. G., Tuohy, K. M., ... & Delzenne, N. M. (2007). Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia, 50(11), 2374-2383. Article
Druat, C., Alligier, M., Salazar, N., Neyrinck, A.M., & Delzenne, N.M. (2014). Modulation of the gut microbiota by nutrients with prebiotic and probiotic properties. Adv Nur, 5(5), 624S-633S. DOI:10.3945/an.114.005835
Everard, A., & Cani, P. (2013). Diabetes, obesity and gut microbiota. Best Pract. Res. Clin. Gastroenterol, 27, 73–83. Article
Falcinelli, S., Rodiles, A., Hatef, A., Picchietti, S., Cossignani, L., Merrifield, D. L., ... & Carnevali, O. (2017). Dietary lipid content reorganizes gut microbiota and probiotic L. rhamnosus attenuates obesity and enhances catabolic hormonal milieu in zebrafish. Scientific reports, 7(1), 5512. Article
Frazier, T. H., DiBaise, J. K., & McClain, C. J. (2011). Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. Journal of Parenteral and Enteral Nutrition, 35(5_suppl), 14S-20S. Article
Han, J. L., & Lin, H. L. (2014). Intestinal microbiota and type 2 diabetes: from mechanism insights to therapeutic perspective. World journal of gastroenterology: WJG, 20(47), 17737. Article
Korkmaz, O. A., Sadi, G., Kocabas, A., Yildirim, O. G., Sumlu, E., Koca, H. B., ... & Bilgehan, M. Lactobacillus helveticus and Lactobacillus plantarum modulate renal antioxidant status in a rat model of fructose-induced metabolic syndrome. Article
Macfarlane, S., Cleary, S., Bahrami, B., Reynolds, N., & Macfarlane, G. T. (2013). Synbiotic consumption changes the metabolism and composition of the gut microbiota in older people and modifies inflammatory processes: a randomised, double‐blind, placebo‐controlled crossover study. Alimentary pharmacology & therapeutics, 38(7), 804-816. Article
Marques, F. Z., Mackay, C. R., & Kaye, D. M. (2018). Beyond gut feelings: how the gut microbiota regulates blood pressure. Nature Reviews Cardiology, 15(1), 20. Article
Qin, Y., Roberts, J. D., Grimm, S. A., Lih, F. B., Deterding, L. J., Li, R., ... & Wade, P. A. (2018). An obesity-associated gut microbiome reprograms the intestinal epigenome and leads to altered colonic gene expression. Genome biology, 19(1), 7. Article
Roberfroid, M., Gibson, G. R., Hoyles, L., McCartney, A. L., Rastall, R., Rowland, I., ... & Guarner, F. (2010). Prebiotic effects: metabolic and health benefits. British Journal of Nutrition, 104(S2), S1-S63. Abstract
Serino, M., Blasco-Baque, V., Nicolas, S., & Burcelin, R. (2014). Managing the manager: gut microbes, stem cells and metabolism. Diabetes & metabolism, 40(3), 186-190. Abstract
Yan Q, Li X, Feng B. (2015). The efficacy and safety of probiotics intervention in preventing conversion of impaired glucose tolerance to diabetes: study protocol for a randomized, double-blinded, placebo controlled trial of the Probiotics Prevention Diabetes Programme (PPDP). BMC Endocr Discord; 15(1): 74. Article
Cardiovascular and Fatty Liver Support
Álvarez-Mercado, A. I., Navarro-Oliveros, M., Robles-Sánchez, C., Plaza-Díaz, J., Sáez-Lara, M. J., Muñoz-Quezada, S., ... & Abadía-Molina, F. (2019). Microbial Population Changes and Their Relationship with Human Health and Disease. Microorganisms, 7(3), 68. Article
Delzenne, N. M., Knudsen, C., Beaumont, M., Rodriguez, J., Neyrinck, A. M., & Bindels, L. B. (2019). Contribution of the gut microbiota to the regulation of host metabolism and energy balance: a focus on the gut–liver axis. Proceedings of the Nutrition Society, 1-10. Abstract
Fernandes, R., do Rosario, V. A., Mocellin, M. C., Kuntz, M. G., & Trindade, E. B. (2017). Effects of inulin-type fructans, galacto-oligosaccharides and related synbiotics on inflammatory markers in adult patients with overweight or obesity: A systematic review. Clinical Nutrition, 36(5), 1197-1206. Abstract
Iacono, A., Raso, G. M., Canani, R. B., Calignano, A., & Meli, R. (2011). Probiotics as an emerging therapeutic strategy to treat NAFLD: focus on molecular and biochemical mechanisms. The Journal of nutritional biochemistry, 22(8), 699-711. Article
Johnson-Henry et al. (2008). Lactobacillus rhamnosus strain GG prevents enterohemorrhagic Escherichia coli 0157:H7- Induced changes in epithelial barrier function. Infect Immun; 76:1340-1348. Abstract
Lee et al. (2006). Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim Biophys Acta; 1761: 736-744. Article
Safari, Z., & Gérard, P. (2019). The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cellular and Molecular Life Sciences, 1-18. Abstract
Shalitin, S., Battelino, T., & Moreno, L. A. (2019). Obesity, Metabolic Syndrome and Nutrition. Nutrition and Growth: Yearbook 2019, 119, 13-42. Chapter
Wang et al. (2009). Effects of Lactobacillus plantarum MA2 isolated from Tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol diet. Appl Microbiol Biotechnol; 84: 341-347. Abstract
Yadav et al. (2007). Antidiabetic effect of probiotic dahl containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition; 23: 62-68. Article
Yari, Z., & Hekmatdoost, A. (2019). Dietary Interventions in Fatty Liver. In Dietary Interventions in Gastrointestinal Diseases (pp. 245-255). Academic Press. Abstract
Protocol
ORIGINAL — The Original is designed as a foundational probiotic formula for the whole family.
Hard working probiotic: The Original is designed to handle and neutralize carcinogens, toxins, molds, yeasts, and food pathogens (e.g., salmonella). The probiotic mix binds heavy metals. Take 1 teaspoon a day. For babies, start with a few grains (mothers can dip their pinkie in the mix to feed the baby). Sensitive individuals start with ¼ teaspoon and gradually up the dosage.*
leaky gut: The Original creates a slightly acidic pH level in the GI Tract to protect the gut membrane from pathogens like yeast. The mix produces amazingly high amounts of the short chain fatty acid butyrate, which facilitate the tightening of the gut membrane. Take 1 teaspoon daily (can take 1 teaspoon three times day during acute bouts of gastric distress).*
Digestion: Take 1 teaspoon to improve digestion, dissolve in mouth slowly. The Original in fact helps the digestion of polyphenols from fruits, berries, veggies, and greens into bioavailable shorter chains of phenolic molecules. The Original also helps digest complex carbohydrates into short chain fatty acids, important for gut health.*
Microbiome and healthy diversity: The Original has team playing organisms that help to build healthier communities in the gut.