No 7 Systemic Booster

The No 7 Systemic Booster holds a secret to the New Longevity.*


The ultimate serious drink, the No 7 Longevity is bursting with a vital assortment of green leafy and hardy vegetables, fruits and berries concentrates, the BioImmersion Super Blend of naturally occurring whole probiotics with their supernatant and ORNS, fiber, and purposely selected nutriceuticals. The No 7 is defiantly powerful.*


In research, longevity and anti-aging is dependent upon the correct nutritional strategy to facilitate and educate the body’s defense, repair, adaptation and renewal functions (Calder et al., 2017).*


The No 7 is a seriously healthy, uncompromising booster drink. There are no sweeteners, fillers, or natural flavors to muck up the real power of the blend. It goes against the sugary traditions of health today.*


Dare to taste the real thing? Take one teaspoon of the No 7 New Longevity mixed in a glass of water. Need a gentler approach? Take with diluted organic juice, or blend into a morning smoothie, no judgment either way. Just drink it.*

$86.20

Availability: In stock

OR
Description

Details

The No 7 Systemic Booster: The New Longevity is a serious, uncompromisingly healthy drink.

There are no sweeteners, fillers, or natural flavors to muck up the real power of the blend. It is unapologetically filled with potent ingredients that defy the sugary traditions of the health industry today. The No 7 nutrients are not sweetened or mixed with any intense sugary fruits, fillers or flavors. Typically, artificial, natural, or organic natural flavors have from 100-500 different components that are not required to be listed on the label. To healthily sweeten the palate, add some diluted organic juice like pineapple or apple, or blend with your morning shake.*

The No 7 Longevity is carefully designed to include the finest nutrients: Well researched ingredients that support and boost the major systems in the body:*

Phytonutrients- Organic strawberry, raspberry, blueberry, tart cherry, elderberry, cranberry, apple extract, pineapple, beet, kale leaves, spinach leaves, broccoli florets.

BioImmersion Super Blend: Probiotics- Bifidobacterium longum, Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus bulgaricus, and Steprococcus thermophilus. Supernatant- probiotic metabolites, and ORNs. Prebiotics- Inulin from Chicory Root along with Fibers- from organic veggies, greens, fruits, and berries.

Nutriceuticals- Fructo Borate, Vitamin B12, Vitamin D3, Folate, Chromium.

What is longevity? What brings on the glow of a robust health in both younger and older people? According to the US National Institute of Aging (NIA), longevity is about measured strategies to extend the healthy functioning of our body (Nadon et al., 2008) – these strategies aim to prevent diseases, especially chronic illnesses like cardiovascular and cancer, among others (Caprara, 2018).*

Globally, while the average life span has increased in both developed and developing nations, in the next 30 years the aging population will double to 22%, or about 2 billion people. Since there are about 7.7 billion people in the world, this means that almost a quarter of the world will be over 60 years old. Chronic illnesses around the world are responsible for about 35 million deaths each year (United Nations, Ageing, 2017; Living Well - Dying Well, 2018, p. 119).

In the United States, 85% of people who are over 65 years of age suffer from one or two chronic illnesses, and nearly a quarter of children that are under 17 years old suffer one or more chronic conditions, with almost half of young to mature adults (18 to 64 years old) having one or more chronic illnesses (2018, Living Well - Dying Well, p. 120).

Old age causes a variety of biological and cognitive degeneration, yet the decline does not have to be debilitating. Just the opposite, with the correct approach toward prevention, healthy longevity can be achieved (Jin et al., 2015). The World health Organization (WHO) has focused their efforts on addressing non-communicable diseases, or chronic illnesses, such as cancer, ischemic heart diseases, stroke, type 2 diabetes, Alzheimer’s disease and other illnesses, as a preventative approach and a path toward longevity (WHO, 2014; see also Lim et al., 2012 global assessment of both infectious and NCDs diseases).

In the developed world, longevity was thought of as an anti-aging approach that emphasized looks rather than health. Skin care, makeup, supplements, and medicines were created to hide age and stimulate our bodies into producing more energy and higher hormone levels. Merchandise was fused with procedures to tighten or erase wrinkles and skin discolorations, sucking or adding fat, depending on the area treated, to name a few (e.g., Ganceviciene et al., 2012). Mostly, the anti-aging movement was aimed to make women look younger and men more virile.*

The No 7 New Longevity represents a comprehensive approach to health and long life (Jin et al., 2015). This new approach to longevity (or healthy ‘anti-aging’) does not solely focus on how we look but how our bodies function healthily (Fontana et al., 2014).

Key to longevity and anti-aging is the approach to calming inflammation, micro and macro inflammation, seen as the intrinsic biological aging clock (Luo et al., 2011). In 1913, Dr. Arnold Lorand seminal work, Health and Longevity through Rational Diet, explains the connection between inflammation and disease:

“The majority of the diseases with which mankind is afflicted usually creep in through the accumulated effects of successive slight irritation, by the operation of apparently insignificant factors which are you just sufficient to take part in some chemical reaction.” (p. 115)

Calder et al. (2017) characterize aging as an increase in the concentration of inflammatory markers in the blood stream, a phenomenon that has been termed “inflammageing” (see Franceschi & Campisi, 2014; Franceschi et al., 2007; Franceschi et al., 2000).*

Along with inflammation, the ageing of the immune system, called immunosenescence, is also an age-related decline of the immune system that leads to an increased frequency and severity of infectious diseases and certain cancers (Solana & Pawelec, 2004; Clements & Carding, 2016; Bauer & Fuente, 2014). Immunosenescence is brought about by a continuous chronic antigenic - toxins inducing immune response – which then overload the ability of the immune system to keep up with the demands for naïve cells, the components of cells that enable the body to fight off new, unrecognized infections or diseases (Candore et al., 2006; Calder et al., 2018).*

Once low grade chronic inflammation is activated, it becomes a system-wide condition that leads to higher mortality rates from different illnesses (e.g., Bozzetto et al., 2018; AHA, 2017; Clements & Carding, 2016; Morrisette-Thomas et al., 2014). A study on 1018 Italian old persons demonstrated that higher levels of certain inflammation-related mediators such as IL- 6, IL-1ra ,TNA-a, TNF- a receptor II (TNFAR2) were associated with higher number of chronic illnesses, such as hypertension, diabetes, ischemic heart disease, stroke, cancer, Parkinson’s, hip fractures, joint diseases, anemia, kidney disease, and cognitive impairment (Fabbri et al., 2015).*

Longevity is a balanced state of pro- and anti-inflammatory mediators. By protecting the body against the harmful effects of inflammation with high levels of anti-inflammatory molecules, long-life with better health is attainable. For example, Le Couteur et al. (2016) explain the profound effects nutrition has on ageing and longevity, with animal studies showing longevity is achieved with a specific diet that is similar to the dietary traditions of the long-lived people on the island of Okinawa – a predominantly plant based diet.*

In fact, major advances in science show we have nutrient-sensing cellular pathways that link diet and ageing (Le Couteur et al., 2016, Figure 2). Balancing the gut microbiome, avoiding foods that lead to obesity, getting enough sleep, upping whole plant carbohydrates and fibers (from vegetables, fruits, grains, seeds, and nuts), and reducing animal based protein intake, all are shown in research as interventions for extended lifespan and longevity (Vaiseman et al., 2017; Le Couteur et al., 2016; Mirzaei et al., 2014, respectively).*

Candore et al. (2006) found that when we neutralize infectious agents and live in healthy environments, we have a better chance of lowering chronic inflammatory markers in the body and protecting our immune system. Yet, in today’s toxic world, keeping inflammation down is not an easy task. In chapter 8 of Living Well, Dying Well (2018), Dr. Dohrea Bardell discusses a field of medicine that has been established to handle these complex issues - Lifestyle Medicine. Our daily routines include habits that support or detract from our health. Dr. Bardell outlines important steps we can take to improve our health, such as creating better (toxic free) environments at home and at work, changing our dietary habits by eating more plant-based foods, using natural products for personal grooming, our homes and gardens, exercising a few times a week, and more. These steps aim to lower the triggers of chronic inflammation, boost our immune system, energy level, and even sleep better. (LivingWell,DyingWell).*

A plant based dietary habits is essential (Seidelmann et al., 2018). Many scientists have come to realize that health, longevity, and anti-aging are fundamentally dependent upon the correct nutritional strategy that facilitates and educates the body’s defense, repair, adaptation, and renewal functions (Calder et al., 2017; Mykytyn, 2005; see Research tab for more articles on this topic). *

In fact, scientific research insists upon the daily consumption of plant-based foods, probiotics and their fermented metabolites, plenty of fiber, and particular nutriceuticals to achieve and sustain longevity: the healthy systemic functions of the body (Seidelmann et al., 2018; Devi & Sekhar, 2018; Filosa et al, 2018; Donoiu et al., 2018; Iskar & Antonyak, 2018; Smith & Hsu, 2018; Holscher, 2017).*

The No 7 Systemic Booster: The New Longevity is thoughtfully designed to provide a measured serving of high active nutrients from vegetables, greens, fruits, and berries, fiber, naturally whole probiotics with their metabolites, and full servings of important nutriceuticals. No 7 Systemic Booster has a definitive purpose: boosting the body’s different systems with excellent nutritious drink that is potent with ingredients shown in research to offer longevity.*

Let’s take a look at how the different ingredients work in the body. For a good jumping point, click on the Research Tab to access the global research and references to further study longevity and better health.

One of the keys to the aging process is our intestinal microbiota (Vaiseman et al., 2017). The presence of micro-organisms is actually found in the placenta and amniotic fluid (Collado et al., Nagpal et al., 2017; 2016; Arboleya et al., 2016). Stressors such as bad dietary habits, lack of exercise, toxic environments, use of antibiotics, can change the microbiota into a “dysbiosis state” that may cause different chronic diseases from immune-mediated disorders to neuropsychiatric conditions. Researchers believe that a dysbiosis state is due to alteration in the crosstalk between “commensals bacteria and intestinal epithelium, including immune cells of the gut associated lymphoid tissue (Lepage et al., 2011; Calder et al., 2017). An unfavorable balance or change in the microbiota is believed to be one of the reasons for obesity worldwide (Gao et al., 2015; Santacruz et al., 2010), an issue that affects people of all ages.

Scientists believe that dysbiosis of the gut is generated when lower diversity in the microbiota and inflammation of the gut are combined. Dysbiosis can lead to frailty (van Tongeren et al., 2005), Crohn’s (De Cruz et al., 2012), obesity and metabolic illnesses (Le Chatelier et al., 2013), colorectal cancer (Chen et al., 2012), among other conditions.

The No 7 super blend collection of naturally occurring probiotics with their supernatant and ORNs works together with plants polyphenols and fibers (as prebiotics). Probiotic microorganisms belong mostly to the following geni: Lactobacillus, Bifidobacterium, and LactococusStreptococcusEnterococcus (Markowiak & Śliżewska, 2017). These foundational organisms form strong communities (ecosystems) that perform many health benefits (Nagpal et al., 2018).

For example, the Bifidobacterium have been identified as the most global inhabitants of the human host (Biavati & Mattarelli, 2006). From infancy (and even as a fetus), to adulthood and old age, health is associated with the Bifidobacterial family (Arboleya et al., 2016). In animal studies, Bifidobacterium is shown to support brain/gut axis and prevent certain types of cancers (Savignac et al., 2014, Sivan et al., 2015). Lactobacillus casei has shown in research to lower the formation of colorectal tumors (Ishikawa et al., 2005). Aging and pro-inflammation are linked ‘reduced transepithelial electric resistance’ or gut-permeability (Nicolettie, 2015). Probiotics organisms such as lactobacillus and Bifidobacterium both help to maintain a healthy microbiota which in turn halt or reverse detrimental effects of aging, strengthening intestinal barrier and the innate immune response (Nicoletti, 2015).

Research literature on age and longevity shows prolific evidence that links nutrition and gut microbiota to systemic inflammation, and suggests that dietary interventions can influence microbiota composition and diversity (Nagpal et al., 2017; Claesson et al., 2012). In fact, lower inflammation is strongly associated with vegetarian diets (or the Mediterranean diet), rich in fruits, vegetables, nuts, seeds, legumes, and whole grains, with fats from plant oils, e.g., olive oil (Calder et al., 2011; Sarubbo et al., 2018).

What about brain aging?  Inflamm-aging is due in part to the increase of oxidative stress in the body and brain. Inflamm-aging is caused by a continuous antigenic load (a toxin inducing immune response) and stress which activates subclinical, chronic low-grade inflammation (Franceschi et al., 2017; 2006; Minciullo et al., 2015; Sarubbo et al., 2018).  Neuro-inflammation is part of the inflamm-aging process, and is linked with decreased brain functionality, e.g., memory, learning, and coordination (Sarubbo et al., 2018). Combination of vegetables, greens, fruits, and plant fiber provide a host of rich polyphenols, shown to lower a variety of pro-inflammatory markers (Spencer et al., 2012; Hermsdorff et al., 2010; Bhupathiraju & Tucker, 2010; Holt et al., 2009). Effects of polyphenols on the body and brain include complex interaction, mediation, and activation of a variety of important biomolecules, exerting influence over cell senescence, inflammation, apoptosis, stress resistance, and metabolism (Queen & Tollefsbol, 2010)  have been studied extensively for reducing oxidative stress and as anti-inflammatory and repair agents (Joseph et al., 2007; Sheridan et al., 2013; Pandey et al., 2009; Sheridan et al., 2013; Lau et al, 2005).

No 7 Longevity offers many phytonutrients from organic fruits, vegetables, greens, and plant fiber: Organic strawberry, raspberry, blueberry, tart cherry, elderberry, cranberry, apple extract, pineapple, beet, kale leaves, spinach leaves, broccoli florets.

Green leafy vegetables and vegetables such as beetroot contain dietary nitrates that mitigate many functions, such as increase energy for exercise, supplying blood and oxygen to working tissues (Kenjale et al., 2011; Lidder & Webb, 2013), blood pressure lowering (Kapil et al., 2015), and both decreasing blood pressure and improving exercise (Berry et al., 2015). Each additional serving of vegetable and fruits protect against erectile dysfunction among men with diabetes (Wang et al., 2013). Nitrates from food helps maintain brain health and function (Presley et al., 2010), and show an overall beneficial health effects, the more – the better (Hord, Tang, & Bryan, 2009).

Broccoli has high levels of glucosinolates and sulforaphanes, a potent mix of phyto-nutrient shown in research to provide phase II enzyme inducer to boost the liver’s ability to detoxify. Broccoli is also shown in research as a protective agent, offering anti-carcinogenic properties and mechanisms (Zhang et al., 1994; Zhang et al., 2015; Leon et al., 2017).

Fruits and berries: Anthocyanins from berry fruits with red, blue, or purple, enhance cognitive functions and extend neuroprotective properties (Joseph et al., 2009; Poulose & Carey, 2012). Moreover, anthocyanins can be used for inflammation-mediated conditions such as atherosclerosis (Aboonabi & Singh, 2015; Lee et al., 2014). Proanthocyanidins found in berries have also neuroprotective effects (Joseph et al., 2010).

Supplementation with dietary phytochemicals have direct and hormetic effects, balancing the pro and anti-inflammatory responses (Davinelli et al., 2015; Karlsen et al., 2007). Blueberries in particular have shown in research to improve memory in older adults (Krikorian et al., 2010; see research tab of our Blueberry-Extract for more information). Cherries and cherry juice are shown to improve memory and cognition in older adult (Kent et al., 2015). For more research on berries, see our High-ORAC as well as Phyto-Power research tabs.

The Hormetic Response:

A teaspoon of the No 7 longevity can be thought of as one veggie/fruit serving. And it can also work in small dosages called the hormetic effect or ‘preconditioning/Hormesis.’ Food phytochemicals play an emerging role as hormetic inducers of neuroprotective pathways relevant for brain aging. For example, in small portions, dietary phytochemicals from vegetables and fruits offer a stimuli that trigger adaptive stress-response mediated by NF-kB to provide neuroprotection (Davinelli et al., 2016).

Selective Nutriceuticals: The No 7 Longevity also includes patented nutriceuticals such as the Fructo Borate (125mg) and Chromium (500mcg), B12 (250mcg; as Methylcobalamin), Folate (400mcg; as 5-methyltetrahydrofolate or Quatrefolic), and Vitamin D (1000IU).

Fructo Borate is a patented natural plant-derived molecule that works effectively on systemic inflammation (and pain) for people with osteoarthritis (Scorei et al., 2011). Together with polyphenols from the vegetables, greens, fruits, and berries, Fructo Borate is potentiated for a greater bone protection (Horcjada & Offord, 2012; Shen et al., 2012). As a systemic anti-inflammation, Boron and Fructo Borate show a great potential for longevity (Nielsen, 2018).

Chromium has also been researched extensively for blood sugar regulation, weight management, and longevity (, Smith & Hsu, 2018; Iskra & Antonyak, 2018).

Vitamins B12, Folate, and D have shown in research to support many different systems in the body, from cardiovascular and metabolic diseases, brain aging, arterial function, energy, and Longevity (Ford et al., 2014; Lee et al., 2014; Fenech, 2017; Kwok et al., 2012; Thomas & Fenech, 2015; Watson et al., 2018, respectively). Check out these and more references at the Research tab of No-7-Longevity

The No 7 Longevity encompasses a great deal of research into better health. The scientific community has much more to discover, yet many of the findings do show a clear path toward health that is not riddled by chronic conditions that can be supported by a plant-based diet of whole foods, a cleaner home and office environments, exercise, toxic free personal and home cleaning products, organic or pesticides & herbicides free foods, and clean, researched based supplementations (see Living Well – Dying Well, Chapter 8).

References

American Heart Association. (2017, March 09). Unhealthy diets linked to more than 400,000 cardiovascular deaths [AHA/ASA Newsroom]. Retrieved from Article

Aboonabi, A., & Singh, I. (2015). Chemopreventive role of anthocyanins in atherosclerosis via activation of Nrf2–ARE as an indicator and modulator of redox. Biomedicine & Pharmacotherapy72, 30-36. Article

Arboleya, S., Watkins, C., Stanton, C., & Ross, R. P. (2016). Gut bifidobacteria populations in human health and aging. Frontiers in microbiology7, 1204. Article

Bauer, M. E., & De la Fuente, M. (2014). Oxidative stress, inflammaging, and immunosenescence. In Inflammation, Advancing Age and Nutrition (pp. 39-47). https://doi.org/10.1016/B978-0-12-397803-5.00004-6

Berry, M. J., Justus, N. W., Hauser, J. I., Case, A. H., Helms, C. C., Basu, S., ... & Miller, G. D. (2015). Dietary nitrate supplementation improves exercise performance and decreases blood pressure in COPD patients. Nitric Oxide48, 22-30. Article

Bhupathiraju, S. N., & Tucker, K. L. (2010). Greater variety in fruit and vegetable intake is associated with lower inflammation in Puerto Rican adults–. The American journal of clinical nutrition93(1), 37-46. Article

Biagi, E., Candela, M., Turroni, S., Garagnani, P., Franceschi, C., & Brigidi, P. (2013). Ageing and gut microbes: perspectives for health maintenance and longevity. Pharmacological Research69(1), 11-20. https://doi.org/10.1016/j.phrs.2012.10.005

Biavati, B., & Mattarelli, P. (2006). The family bifidobacteriaceae. In The prokaryotes (pp. 322-382). Springer: New York, NY. Abstract

Bozzetto, L., Costabile, G., Della Pepa, G., Ciciola, P., Vetrani, C., Vitale, M., ... & Annuzzi, G. (2018). Dietary fibre as a unifying remedy for the whole spectrum of obesity-associated cardiovascular risk. Nutrients10(7), 943. DOI:10.3390/nu10070943

Calder, P. C., Bosco, N., Bourdet-Sicard, R., Capuron, L., Delzenne, N., Doré, J., ... & Visioli, F. (2017). Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing research reviews40, 95-119. Article

Calder, P. C., Ahluwalia, N., Brouns, F., Buetler, T., Clement, K., Cunningham, K., ... & Marcos, A. (2011). Dietary factors and low-grade inflammation in relation to overweight and obesity. British Journal of Nutrition106(S3), S1-S78. Article

Candore, G., Colonna-Romano, G., Balistreri, C. R., Carlo, D. D., Grimaldi, M. P., Listì, F., ... & Caruso, C. (2006). Biology of longevity: role of the innate immune system. Rejuvenation research9(1), 143-148. Abstract

Caprara, G. (2018). Diet and longevity: The effects of traditional eating habits on human lifespan extension. Mediterranean Journal of Nutrition and Metabolism, (Preprint), 1-34. Abstract

Chen, W., Liu, F., Ling, Z., Tong, X., & Xiang, C. (2012). Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PloS one7(6), e39743. Article

Claesson, M. J., Jeffery, I. B., Conde, S., Power, S. E., O’connor, E. M., Cusack, S., ... & Fitzgerald, G. F. (2012). Gut microbiota composition correlates with diet and health in the elderly. Nature488(7410), 178.Abstract

Clements, S. J., & Carding, S. R. (2016). Can Nutritional Intervention Counteract Immunosenescence in the Elderly?. In Molecular Basis of Nutrition and Aging (pp. 375-391). https://doi.org/10.1016/B978-0-12-801816-3.00028-5

Collado, M. C., Rautava, S., Aakko, J., Isolauri, E., and Salminen, S. (2016). Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci. Rep. 6, 23129. Article

Davinelli, S., Maes, M., Corbi, G., Zarrelli, A., Willcox, D. C., & Scapagnini, G. (2016). Dietary phytochemicals and neuro-inflammaging: from mechanistic insights to translational challenges. Immunity & Ageing13(1), 16. Article

Davinelli, S., Bertoglio, J. C., Zarrelli, A., Pina, R., & Scapagnini, G. (2015). A randomized clinical trial evaluating the efficacy of an anthocyanin–maqui berry extract (Delphinol®) on oxidative stress biomarkers. Journal of the American College of Nutrition34(sup1), 28-33. Article

De Cruz, P., Prideaux, L., Wagner, J., Ng, S. C., McSweeney, C., Kirkwood, C., ... & Kamm, M. A. (2011). Characterization of the gastrointestinal microbiota in health and inflammatory bowel disease. Inflammatory bowel diseases18(2), 372-390. https://doi.org/10.1002/ibd.21751

Desmond, M. A., Sobiecki, J., Fewtrell, M., & Wells, J. C. (2018). Plant-based diets for children as a means of improving adult cardiometabolic health. Nutrition reviews76(4), 260-273. https://doi.org/10.1093/nutrit/nux079

Donoiu, I., Militaru, C., Obleagă, O., Hunter, J. M., Neamţu, J., Biţă, A., ... & Rogoveanu, O. C. (2018). Effects of Boron-Containing Compounds on Cardiovascular Disease Risk Factors–A Review. Journal of Trace Elements in Medicine and Biology. Abstract

Fabbri, E., An, Y., Zoli, M., Simonsick, E. M., Guralnik, J. M., Bandinelli, S., ... & Ferrucci, L. (2014). Aging and the burden of multimorbidity: associations with inflammatory and anabolic hormonal biomarkers. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences70(1), 63-70. https://doi.org/10.1093/gerona/glu127

Filosa, S., Di Meo, F., & Crispi, S. (2018). Polyphenols-gut microbiota interplay and brain neuromodulation. Neural regeneration research13(12), 2055. Article

Fontana, L., Kennedy, B. K., Longo, V. D., Seals, D., & Melov, S. (2014). Medical research: treat ageing. Nature News511(7510), 405. Article

Food and Agriculture Organization (FAO). (2002). Guidelines for the evaluation of probiotics in food; Report of a joint FAO/WHO Working Group on Drafting guidelines for the evaluation of probiotics in food; FAO: London, ON, Canada, 30 April–1 May 2002.

Franceschi, C., & Campisi, J. (2014). Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences69(Suppl_1), S4-S9. Article

Franceschi, C., Capri, M., Monti, D., Giunta, S., Olivieri, F., Sevini, F., ... & Cevenini, E. (2007). Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mechanisms of ageing and development128(1), 92-105. https://doi.org/10.1016/j.mad.2006.11.016

Franceschi, C., Bonafè, M., Valensin, S., Olivieri, F., De Luca, M., Ottaviani, E., & De Benedictis, G. (2000). Inflamm‐aging: an evolutionary perspective on immunosenescence. Annals of the New York Academy of Sciences908(1), 244-254. Abstract

Franceschi, C., Garagnani, P., Vitale, G., Capri, M., & Salvioli, S. (2017). Inflammaging and ‘Garb-aging’. Trends in Endocrinology & Metabolism28(3), 199-212. Abstract

Gao, X., Jia, R., Xie, L., Kuang, L., Feng, L., & Wan, C. (2015). Obesity in school-aged children and its correlation with Gut E. coli and Bifidobacteria: a case–control study. BMC pediatrics15(1), 64. Article

Ganceviciene, R., Liakou, A. I., Theodoridis, A., Makrantonaki, E., & Zouboulis, C. C. (2012). Skin anti-aging strategies. Dermato-endocrinology4(3), 308-319. Article

Hermsdorff, H. H. M., Zulet, M. Á., Puchau, B., & Martínez, J. A. (2010). Fruit and vegetable consumption and proinflammatory gene expression from peripheral blood mononuclear cells in young adults: a translational study. Nutrition & metabolism7(1), 42. Article

Holscher, H. D. (2017). Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes8(2), 172-184. https://doi.org/10.1080/19490976.2017.1290756

Holt, E. M., Steffen, L. M., Moran, A., Basu, S., Steinberger, J., Ross, J. A., ... & Sinaiko, A. R. (2009). Fruit and vegetable consumption and its relation to markers of inflammation and oxidative stress in adolescents. Journal of the American Dietetic Association109(3), 414-421. Article

Hord, N. G., Tang, Y., & Bryan, N. S. (2009). Food sources of nitrates and nitrites: the physiologic context for potential health benefits–. The American journal of clinical nutrition90(1), 1-10. Article

Joseph, J. A., Shukitt-Hale, B., Brewer, G. J., Weikel, K. A., Kalt, W., & Fisher, D. R. (2010). Differential protection among fractionated blueberry polyphenolic families against DA-, Aβ42-and LPS-Induced decrements in Ca2+ buffering in primary hippocampal cells. Journal of agricultural and food chemistry58(14), 8196-8204. Article

Joseph, J. A., Shukitt-Hale, B., & Willis, L. M. (2009). Grape juice, berries, and walnuts affect brain aging and behavior. The Journal of nutrition139(9), 1813S-1817S. Article

Joseph, J. A., Shukitt‐Hale, B. & Lau, F. C. (2007). Fruit polyphenols and their effects on neuronal signaling and behavior in senescence. Annals of the New York Academy of Sciences1100(1), 470-485. Article

Ishikawa, H., Akedo, I., Otani, T., Suzuki, T., Nakamura, T., Takeyama, I., ... & Kakizoe, T. (2005). Randomized trial of dietary fiber and Lactobacillus casei administration for prevention of colorectal tumors. International journal of cancer116(5), 762-767. Article

Jin, K., Simpkins, J. W., Ji, X., Leis, M., & Stambler, I. (2015). The critical need to promote research of aging and aging-related diseases to improve health and longevity of the elderly population. Aging and disease6(1), 1. Article

Kapil, V., Khambata, R. S., Robertson, A., Caulfield, M. J., & Ahluwalia, A. (2014). Dietary nitrate provides sustained blood pressure lowering in hypertensive patients: a randomized, phase 2, double-blind, placebo-controlled study. Hypertension, HYPERTENSIONAHA-114. Article

Karlsen, A., Retterstøl, L., Laake, P., Paur, I., Kjølsrud-Bøhn, S., Sandvik, L., & Blomhoff, R. (2007). Anthocyanins inhibit nuclear factor-κ B activation in monocytes and reduce plasma concentrations of pro-inflammatory mediators in healthy adults. The Journal of nutrition137(8), 1951-1954. Article

Kenjale, A. A., Ham, K. L., Stabler, T., Robbins, J. L., Johnson, J. L., VanBruggen, M., ... & Allen, J. D. (2011). Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease. Journal of applied physiology110(6), 1582-1591. Article

Kent, K., Charlton, K., Roodenrys, S., Batterham, M., Potter, J., Traynor, V., ... & Richards, R. (2017). Consumption of anthocyanin-rich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia. European journal of nutrition56(1), 333-341. Article

Krikorian, R., Shidler, M. D., Nash, T. A., Kalt, W., Vinqvist-Tymchuk, M. R., Shukitt-Hale, B., & Joseph, J. A. (2010). Blueberry supplementation improves memory in older adults. Journal of agricultural and food chemistry58(7), 3996-4000. Article

Lau, F. C., Shukitt-Hale, B., & Joseph, J. A. (2005). The beneficial effects of fruit polyphenols on brain aging. Neurobiology of aging26(1), 128-132. Article

Le Chatelier, E., Nielsen, T., Qin, J., Prifti, E., Hildebrand, F., Falony, G., ... & Leonard, P. (2013). Richness of human gut microbiome correlates with metabolic markers. Nature500(7464), 541. Abstract

Le Couteur, D. G., Solon-Biet, S., Wahl, D., Cogger, V. C., Willcox, B. J., Willcox, D. C., ... & Simpson, S. J. (2016). New Horizons: Dietary protein, ageing and the Okinawan ratio. Age and ageing45(4), 443-447. Article

Lee, S. G., Kim, B., Yang, Y., Pham, T. X., Park, Y. K., Manatou, J., ... & Lee, J. Y. (2014). Berry anthocyanins suppress the expression and secretion of proinflammatory mediators in macrophages by inhibiting nuclear translocation of NF-κB independent of NRF2-mediated mechanism. The Journal of nutritional biochemistry25(4), 404-411. Abstract

Leone, A., Diorio, G., Sexton, W., Schell, M., Alexandrow, M., Fahey, J. W., & Kumar, N. B. (2017). Sulforaphane for the chemoprevention of bladder cancer: molecular mechanism targeted approach. Oncotarget, 8(21), 35412. Article

Lepage, P., Häsler, R., Spehlmann, M. E., Rehman, A., Zvirbliene, A., Begun, A., ... & Schreiber, S. (2011). Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology141(1), 227-236. Abstract

Lim, S. S., Vos, T., Flaxman, A. D., Danaei, G., Shibuya, K., Adair-Rohani, H., ... & Aryee, M. (2012). A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The lancet380(9859), 2224-2260. https://doi.org/10.1016/S0140-6736(12)61766-8

Lidder, S., & Webb, A. J. (2013). Vascular effects of dietary nitrate (as found in green leafy vegetables and beetroot) via the nitrate‐nitrite‐nitric oxide pathway. British journal of clinical pharmacology75(3), 677-696. Abstract

Luo, C., Urgard, E., Vooder, T., & Metspalu, A. (2011). The role of COX-2 and Nrf2/ARE in anti-inflammation and antioxidative stress: Aging and anti-aging. Medical hypotheses77(2), 174-178. https://doi.org/10.1016/j.mehy.2011.04.002

Markowiak, P., & Śliżewska, K. (2017). Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients9(9), 1021. Article

McMacken, M., & Shah, S. (2017). A plant-based diet for the prevention and treatment of type 2 diabetes. Journal of geriatric cardiology: JGC14(5), 342.Article

Mirzaei, H., Suarez, J. A., & Longo, V. D. (2014). Protein and amino acid restriction, aging and disease: from yeast to humans. Trends in Endocrinology & Metabolism25(11), 558-566. https://doi.org/10.1016/j.tem.2014.07.002

Morelli, L., & Capurso, L. (2012). FAO/WHO guidelines on probiotics: 10 years later. Journal of clinical gastroenterology46, S1-S2.

Morrisette-Thomas, V., Cohen, A. A., Fülöp, T., Riesco, É., Legault, V., Li, Q., ... & Ferrucci, L. (2014). Inflamm-aging does not simply reflect increases in pro-inflammatory markers. Mechanisms of ageing and development139, 49-57. https://doi.org/10.1016/j.mad.2014.06.005

Mykytyn, C. E. (2006). Anti-aging medicine: A patient/practitioner movement to redefine aging. Social Science & Medicine62(3), 643-653. https://doi.org/10.1016/j.socscimed.2005.06.021

Nadon, N. L., Strong, R., Miller, R. A., Nelson, J., Javors, M., Sharp, Z. D., ... & Harrison, D. E. (2008). sign of aging intervention studies: the NIA interventions testing program. Age30(4), 187-199. Abstract

Nagpal, R., Mainali, R., Ahmadi, S., Wang, S., Singh, R., Kavanagh, K., ... & Yadav, H. (2018). Gut microbiome and aging: Physiological and mechanistic insights. Nutrition and healthy aging4(4), 267-285. Article

Nagpal, R., Tsuji, H., Takahashi, T., Nomoto, K., Kawashima, K., Nagata, S., & Yamashiro, Y. (2017). Ontogenesis of the gut microbiota composition in healthy, full-term, vaginally born and breast-fed infants over the first 3 years of life: A quantitative bird’s-eye view. Frontiers in microbiology8, 1388. Article

Nicoletti, C. (2015). Age-associated changes of the intestinal epithelial barrier: local and systemic implications. Article

O’Toole, P. W., & Jeffery, I. B. (2015). Gut microbiota and aging. Science350(6265), 1214-1215. Abstract

Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative medicine and cellular longevity2(5), 270-278. Article

Poulose, S. M., Carey, A. N., & Shukitt-Hale, B. (2012). Improving brain signaling in aging: could berries e the answer?. Expert review of neurotherapeutics12(8), 887-889. Article

Presley, T. D., Morgan, A. R., Bechtold, E., Clodfelter, W., Dove, R. W., Jennings, J. M., ... & Burdette, J. H. (2011). Acute effect of a high nitrate diet on brain perfusion in older adults. Nitric Oxide24(1), 34-42. Article

Queen, B. L., & Tollefsbol, T. O. (2010). Polyphenols and aging. Current Aging Science3(1), 34-42. Article

Santacruz, A., Collado, M. C., Garcia-Valdes, L., Segura, M. T., Martin-Lagos, J. A., Anjos, T., ... & Sanz, Y. (2010). Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. British Journal of Nutrition104(1), 83-92. Article

Sarubbo, F., Moranta, D., Miralles, A., & Esteban, S. Polyphenols-What's Behind their Antiaging Brain Reputation. Ann Nutr Food Sci. 2018; 1 (2)1009. Article

Savignac, H. M., Kiely, B., Dinan, T. G., & Cryan, J. F. (2014). B ifidobacteria exert strain‐specific effects on stress‐related behavior and physiology in BALB/c mice. Neurogastroenterology & Motility26(11), 1615-1627. Abstract

Seidelmann, S. B., Claggett, B., Cheng, S., Henglin, M., Shah, A., Steffen, L. M., ... & Solomon, S. D. (2018). Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. The Lancet Public Health3(9), e419-e428. Article

Sheridan, G. K., & Murphy, K. J. (2013). Neuron–glia crosstalk in health and disease: fractalkine and CX3CR1 take centre stage. Open biology3(12), 130181. Article

Sivan, A., Corrales, L., Hubert, N., Williams, J. B., Aquino-Michaels, K., Earley, Z. M., ... & Chang, E. B. (2015). Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science, aac4255. Article

Solana R. & Pawelec, G. (2004). Immunosenescence. NeuroImmune Biology, 4, 9-21.

Spencer, J. P., Vafeiadou, K., Williams, R. J., & Vauzour, D. (2012). Neuroinflammation: modulation by flavonoids and mechanisms of action. Molecular aspects of medicine33(1), 83-97. Abstract

Stevens-Long, J. & Bardell, D. (2018). Living well, dying well. Santa Barbara, CA: Fielding University Academic Press

 United Nation. (2017). Ageing. http://www.un.org/en/sections/issues-depth/ageing/

Vaiserman, A. M., Koliada, A. K., & Marotta, F. (2017). Gut microbiota: A player in aging and a target for anti-aging ervention. Ageing research reviews35, 36-45. https://doi.org/10.1016/j.arr.2017.01.001

van Tongeren, S. P., Slaets, J. P., Harmsen, H. J. M., & Welling, G. W. (2005). Fecal microbiota composition and frailty. Applied and environmental microbiology71(10), 6438-6442. Article

Wang, F., Dai, S., Wang, M., & Morrison, H. (2013). Erectile dysfunction and fruit/vegetable consumption among diabetic Canadian men. Urology82(6), 1330-1335. Abstract

World Health Organization [WHO]. (2014). Twelfth general programme of work: Not merely the absence of disease. Article

Zamora-Ros, R., Rabassa, M., Cherubini, A., Urpí-Sardà, M., Bandinelli, S., Ferrucci, L., & Andres-Lacueva, C. (2013). High Concentrations of a Urinary Biomarker of Polyphenol Intake Are Associated with Decreased Mortality in Older Adults, 2. The Journal of nutrition143(9), 1445-1450. Article

Zhang, X., Shu, X. O., Xiang, Y. B., Yang, G., Li, H., Gao, J., ... & Zheng, W. (2011). Cruciferous vegetable consumption is associated with a reduced risk of total and cardiovascular disease mortality–. The American journal of clinical nutrition, 94(1), 240-246. Article

Zhang, Y., Kensler, T. W., Cho, C. G., Posner, G. H., & Talalay, P. (1994). Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proceedings of the National Academy of Sciences, 91(8), 3147-3150. Article

 

 

 

Research

Research

FOOD SCIENCE: THE APPLICATION AND USE OF:

Phytonutrients- Organic strawberry, raspberry, blueberry, tart cherry, elderberry, cranberry, apple extract, pineapple, beet, kale leaves, spinach leaves, broccoli florets.
BioImmersion Super Blend: Probiotics- Bifidobacterium longum, Lactobacillus casei, lactobacillus acidophilus, Lactobacillus bulgaricus, and Steprococcus thermophilus. Supernatant- probiotic metabolites, and ORNs. Prebiotics-Inulin from Chicory Root along with fiber from organic veggies, greens, fruits, and berries.
Nutriceuticals- Fructo Borate, Vitamin B12, Vitamin D3, Folate, Chromium.

Phytonutrients & Microbiota: Markers for Longevity and Anti-Aging

Arboleya, S., Watkins, C., Stanton, C., & Ross, R. P. (2016). Gut bifidobacteria populations in human health and aging. Frontiers in microbiology7, 1204. Article

Basu A. Lyons TJ. (2012). Strawberries, blueberries, and cranberries in the metabolic syndrome: clinical perspectives. J Agric Food Chem, 60, 5687-92. Abstract

Belščak-Cvitanović, A., Durgo, K., Huđek, A., Bačun-Družina, V., & Komes, D. (2018). Overview of polyphenols and their properties. In Polyphenols: Properties, Recovery, and Applications (pp. 3-44). https://doi.org/10.1016/B978-0-12-813572-3.00001-4

Bellavia, A., Larsson, S. C., Bottai, M., Wolk, A., & Orsini, N. (2013). Fruit and vegetable consumption and all-cause mortality: a dose-response analysis–. The American journal of clinical nutrition98(2), 454-459. DOI:10.3945/ajcn.112.056119

Biagi, E., Candela, M., Turroni, S., Garagnani, P., Franceschi, C., & Brigidi, P. (2013). Ageing and gut microbes: perspectives for health maintenance and longevity. Pharmacological Research69(1), 11-20. https://doi.org/10.1016/j.phrs.2012.10.005

Calder, P. C., Bosco, N., Bourdet-Sicard, R., Capuron, L., Delzenne, N., Doré, J., ... & Visioli, F. (2017). Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing research reviews40, 95-119. Article

de la Luz Cádiz-Gurrea, M., Micol, V., Joven, J., Segura-Carretero, A., & Fernández-Arroyo, S. (2018). Different behavior of polyphenols in energy metabolism of lipopolysaccharide-stimulated cells. Food Research International. https://doi.org/10.1016/j.foodres.2018.02.027

Devi, S. A., & Sekhar, S. R. (2018). Antiaging Interventions: An Insight into Polyphenols and Brain Aging. In Molecular Basis and Emerging Strategies for Anti-aging Interventions(pp. 281-295). Springer, Singapore. Abstract

Ding, S., Jiang, H., & Fang, J. (2018). Regulation of Immune Function by Polyphenols. Journal of immunology research2018. https://doi.org/10.1155/2018/1264074

Elmann, A., Wang, C. K., & Vauzour, D. (2018). Polyphenols Targeting Brain Cells Longevity, Brain’s Redox Status, and Neurodegenerative Diseases. Oxidative medicine and cellular longevity2018. Abstract

Filosa, S., Di Meo, F., & Crispi, S. (2018). Polyphenols-gut microbiota interplay and brain neuromodulation. Neural regeneration research13(12), 2055. Article

Flavel, M., Yang, X., & Kitchen, B. (2018). Benefits of plant polyphenols in food. Food Australia70(3), 34. Abstract

Galanakis, C. M. (Ed.). (2018). Polyphenols: Properties, Recovery, and Applications. Woodhead Publishing. Book

Harman D. (2006). Free radical theory of aging: an update. Ann N Y Acad Sci, 1067,1–12.

Joseph, J. A., Shukitt-Hale, B., & Casadesus, G. (2005). Reversing the deleterious effects of aging on neuronal communication and behavior: beneficial properties of fruit polyphenolic compounds–. The American Journal of Clinical Nutrition81(1), 313S-316S. Article

Kumar, R., Chauhan, S. K., Vijayalakshmi, S., & Nadanasabapathi, S. (2018). Phytonutrients: Their Relevance to Human Health. In Medicinal Plants (pp. 17-46). CRC Press. Abstract

Li, Y. R., Li, S., & Lin, C. C. (2018). Effect of resveratrol and pterostilbene on aging and longevity. Biofactors, 44(1), 69-82. https://doi.org/10.1002/biof.1400

Link, A., Balaguer, F., & Goel, A. (2010). Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochemical pharmacology80(12), 1771-1792. Abstract

Lorand, A. (1913). Health and longevity through rational diet. Davis. Philadelphia, PA: F.A. Davis Company, Publishers.

Mattioli, R., Mosca, L., Sánchez-Lamar, A., Tempera, I., & Hausmann, R. (2018). Natural Bioactive Compounds Acting against Oxidative Stress in Chronic, Degenerative, and Infectious Diseases. Oxidative Medicine and Cellular Longevity2018. Abstract

Markus, M. A., & Morris, B. J. (2008). Resveratrol in prevention and treatment of common clinical conditions of aging. Clinical interventions in aging3(2), 331. Article

Maurya, P. K., & Rizvi, S. I. (2009). Protective role of tea catechins on erythrocytes subjected to oxidative stress during human aging. Natural product research23(12), 1072-1079. Abstract

Mileo, A. M., & Miccadei, S. (2016). Polyphenols as modulator of oxidative stress in cancer disease: new therapeutic strategies. Oxidative medicine and cellular longevity2016. http://dx.doi.org/10.1155/2016/6475624

Minciullo, P. L., Catalano, A., Mandraffino, G., Casciaro, M., Crucitti, A., Maltese, G., ... & Basile, G. (2016). Inflammaging and anti-inflammaging: the role of cytokines in extreme longevity. Archivum immunologiae et therapiae experimentalis64(2), 111-126. Article

Nagpal, R., Mainali, R., Ahmadi, S., Wang, S., Singh, R., Kavanagh, K., ... & Yadav, H. (2018). Gut microbiome and aging: Physiological and mechanistic insights. Nutrition and healthy aging4(4), 267-285. Article

O’Toole, P. W., & Jeffery, I. B. (2015). Gut microbiota and aging. Science350(6265), 1214-1215. Abstract

Paredes-López, O., Cervantes-Ceja, M. L., Vigna-Pérez, M., & Hernández-Pérez, T. (2010). Berries: improving human health and healthy aging, and promoting quality life—a review. Plant foods for human nutrition65(3), 299-308. Abstract

Periandavan, K., & Velusamy, P. (2018). Role of Phytochemicals in Eliciting Longevity Genes. In Molecular Basis and Emerging Strategies for Anti-aging Interventions(pp. 267-279). Springer, Singapore. Abstract

Rafiei, H., Omidian, K., & Bandy, B. (2018). Protection by different classes of dietary polyphenols against palmitic acid-induced steatosis, nitro-oxidative stress and endoplasmic reticulum stress in HepG2 hepatocytes. Journal of Functional Foods44, 173-182. https://doi.org/10.1016/j.jff.2018.02.033

Rahnasto-Rilla, M., Tyni, J., Huovinen, M., Jarho, E., Kulikowicz, T., Ravichandran, S., ... & Moaddel, R. (2018). Natural polyphenols as sirtuin 6 modulators. Scientific reports8(1), 4163. https://www.nature.com/articles/s41598-018-22388-5

Ramana, K. V., Reddy, A., Majeti, N. V., & Singhal, S. S. (2018). Therapeutic Potential of Natural Antioxidants. Oxidative medicine and cellular longevity, 2018. Abstract

Rizvi, S. I., & Maurya, P. K. (2007). Alterations in antioxidant enzymes during aging in humans. Molecular biotechnology37(1), 58-61. Abstract

Rizvi, S. I., & Maurya, P. K. (2007). Markers of oxidative stress in erythrocytes during aging in humans. Annals of the New York academy of sciences1100(1), 373-382. Abstract

Sarubbo, F., Esteban, S., Miralles, A., & Moranta, D. (2018). Effects of resveratrol and other polyphenols on Sirt1: relevance to brain function during aging. Current Neuropharmacology16(2), 126-136. Abstract

Sarubbo, F., Moranta, D., Miralles, A., & Esteban, S. Polyphenols-What's Behind their Antiaging Brain Reputation. Ann Nutr Food Sci. 2018; 1 (2)1009. Article

Shukitt-Hale, B., Lau, F. C., & Joseph, J. A. (2008). Berry fruit supplementation and the aging brain. Journal of Agricultural and Food Chemistry56(3), 636-641. Abstract

Sivakanesan, R. (2018). Antioxidants for Health and Longevity. In Molecular Basis and Emerging Strategies for Anti-aging Interventions (pp. 323-341). Springer, Singapore. Abstract

Slemmer, J. E., Shacka, J. J., Sweeney, M. I., & Weber, J. T. (2008). Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging. Current medicinal chemistry15(4), 404-414. DOI: https://doi.org/10.2174/092986708783497337

Spencer, J. P., Vafeiadou, K., Williams, R. J., & Vauzour, D. (2012). Neuroinflammation: modulation by flavonoids and mechanisms of action. Molecular aspects of medicine33(1), 83-97. Abstract

Stork, B., & Ventura, N. (2018). Targeting the BECN1-BCL2 autophagy regulatory complex to promote longevity. Biotarget2. Abstract

Teplova, V. V., Isakova, E. P., Klein, O. I., Dergachova, D. I., Gessler, N. N., & Deryabina, Y. I. (2018). Natural Polyphenols: Biological Activity, Pharmacological Potential, Means of Metabolic Engineering. Applied Biochemistry and Microbiology54(3), 221-237. Abstract

Tiihonen, K., Ouwehand, A. C., & Rautonen, N. (2010). Human intestinal microbiota and healthy ageing. Ageing research reviews9(2), 107-116. https://doi.org/10.1016/j.arr.2009.10.004

Vitetta, L., Briskey, D., Alford, H., Hall, S., & Coulson S. (2014). Probiotics, prebiotics and the gastrointestinal tract in health and disease. Inflammopharmacology, DOI: 10.1007/s10787-014-0201-4. Article

Wang, H., Liu, J., Li, T., & Liu, R. H. (2018). Blueberry extract promotes longevity and stress tolerance via DAF-16 in Caenorhabditis elegans. Food & function9(10), 5273-5282. Abstract

Zamora-Ros, R., Rabassa, M., Cherubini, A., Urpí-Sardà, M., Bandinelli, S., Ferrucci, L., & Andres-Lacueva, C. (2013). High Concentrations of a Urinary Biomarker of Polyphenol Intake Are Associated with Decreased Mortality in Older Adults, 2. The Journal of nutrition143(9), 1445-1450. Article

Longevity: Polyphenols, Probiotics and Nutriceuticals

An, R., Wilms, E., Masclee, A. A., Smidt, H., Zoetendal, E. G., & Jonkers, D. (2018). Age-dependent changes in GI physiology and microbiota: time to reconsider?. Gut67(12), 2213-2222. Abstract

Buford, T. W. (2017). (Dis) Trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome5(1), 80. https://doi.org/10.1186/s40168-017-0296-0

Cassidy, A. (2018). Berry anthocyanin intake and cardiovascular health. Molecular aspects of medicine61, 76-82. DOI:10.1016/j.mam.2017.05.002

Dinan, T. G., & Cryan, J. F. (2017). Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. The Journal of physiology595(2), 489-503. Article

Huang, H., Chen, G., Liao, D., Zhu, Y., & Xue, X. (2016). Effects of berries consumption on cardiovascular risk factors: A meta-analysis with trial sequential analysis of randomized controlled trials. Scientific reports6, 23625. DOI:10.1038/srep23625

Laparra, J.M., & Sanz, Y. (2010). Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol. Res, 61, 219–225. doi: 10.1016/j.phrs.2009.11.001

Shi, Y., Zhou, J., Jiang, B., & Miao, M. (2017). Resveratrol and inflammatory bowel disease. Annals of the New York Academy of Sciences1403(1), 38-47.

Bocci V. (1992). The neglected organ: Bacterial flora has a crucial immunostimulatory role. Perspect. Biol. Med, 35, 251–260.

Madsen, K. (2006). Probiotics and the immune response. J Clin Gastroenterol, 40, 232–4.

Oteiza, P. I., Fraga, C. G., Mills, D. A., & Taft, D. H. (2018). Flavonoids and the gastrointestinal tract: local and systemic effects. Molecular aspects of medicine.

 https://doi.org/10.1016/j.mam.2018.01.001

Parvez, S., Malik, K.A., Kang, S., & Kim, H.Y. (2006). Probiotics and their fermented food products are beneficial for health. J Appl Microbiol. 100, 1171–85.

Pasinetti, G. M., Singh, R., Westfall, S., Herman, F., Faith, J., & Ho, L. (2018). The role of the gut microbiota in the metabolism of polyphenols as characterized by gnotobiotic mice. Journal of Alzheimer's Disease, (Preprint), 1-13. Abstract

Roberfroid, M.B. (2000). Prebiotics and probiotics: Are they functional foods? Am J Clin Nutr, 71, 1682S–7S.

Saini, R., Saini, S., Sugandha. (2009). Probiotics: The health boosters. J Cutan Aesthet Surg, 2, 112.

Rizvi, S. I., & Çakatay, U. (2018). Molecular Basis and Emerging Strategies for Anti-aging Interventions.  Introduction

Azcarate-Peril, M.A., Sikes, M., Bruno-Barcena, J.M. (2011). The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer? Am J Physiol Gastrointest Liver Physiol, 301, G401-G424. doi:10.1152/ajpgi.00110.2011.

Boron and Chromium: Healthy Longevity

Donoiu, I., Militaru, C., Obleagă, O., Hunter, J. M., Neamţu, J., Biţă, A., ... & Rogoveanu, O. C. (2018). Effects of Boron-Containing Compounds on Cardiovascular Disease Risk Factors–A Review. Journal of Trace Elements in Medicine and Biology. Abstract

Iskra, R., & Antonyak, H. (2018). Chromium in Health and Longevity. In Trace Elements and Minerals in Health and Longevity (pp. 133-162). Springer, Cham. Abstract

Malavolta, M., & Mocchegiani, E. Trace Elements and Minerals in Health and Longevity. Preface

Nielsen, F. H. (2018). Boron in Aging and Longevity. In Trace Elements and Minerals in Health and Longevity (pp. 163-177). Springer, Cham. Abstract

Smith Jr, J. C., & Hsu, J. M. (2018). ZINC, COPPER, CHROMIUM, AND SELENIUM. Nutritional Approaches To Aging Research. Book

Fructo Borate and Polyphenols: Joint & Bone Health

Horcajada, M. N., & Offord, E. (2012). Naturally plant-derived compounds: role in bone anabolism. Current molecular pharmacology5(2), 205-218. Abstract

Sacco, S. M., Horcajada, M. N., & Offord, E. (2013). Phytonutrients for bone health during ageing. British journal of clinical pharmacology75(3), 697-707. Article

Scorei et al. (2011). A double-blind, Placebo-Controlled Polot Study to Evaluate the Effect of Calcium Fructoborate on Systemic Inflammation and Dyslipidemia Markers for Middle-Aged People with Ordinary Osteoarthritis. Biol Trace Elem Res;144:253-263.

Shen, C.L., von Bergen, V., Chyu, M.C., Jenkins, M.R., Mo, H., Chen, C..H, & Kwun, I.S. (2012). Fruits and dietary phytochemicals in bone protection. Nutr Res, 32(12), 897-910. DOI:10.1016/j.nutres.2012.09.018

Weaver, C. M., Alekel, D. L., Ward, W. E., & Ronis, M. J. (2012). Flavonoid intake and bone health. Journal of nutrition in gerontology and geriatrics31(3), 239-253. Abstract

Zhang, Y. B., Zhong, Z. M., Hou, G., Jiang, H., & Chen, J. T. (2011). Involvement of oxidative stress in age-related bone loss. Journal of Surgical Research169(1), e37-e42. https://doi.org/10.1016/j.jss.2011.02.033

Vitamin D, B12, & Folate: Systemic Longevity Boosters

Autier, P., Boniol, M., Pizot, C., & Mullie, P. (2014). Vitamin D status and ill health: a systematic review. The lancet Diabetes & endocrinology2(1), 76-89. DOI:10.1016/S2213-8587(13)70165-

Fenech, M. (2017). Vitamins Associated with Brain Aging, Mild Cognitive Impairment, and Alzheimer Disease: Biomarkers, Epidemiological and Experimental Evidence, Plausible Mechanisms, and Knowledge Gaps. Advances in Nutrition8(6), 958-970. https://doi.org/10.3945/an.117.015610

Ford, J. A., MacLennan, G. S., Avenell, A., Bolland, M., Grey, A., Witham, M., & RECORD Trial Group. (2014). Cardiovascular disease and vitamin D supplementation: trial analysis, systematic review, and meta-analysis–. The American journal of clinical nutrition100(3), 746-755. Abstract

Grant, W. B. (2011). An estimate of the global reduction in mortality rates through doubling vitamin D levels. European Journal of Clinical Nutrition65(9), 1016. DOI:10.1038/ejcn.2011.68

Goulão, B., Stewart, F., Ford, J. A., MacLennan, G., & Avenell, A. (2018). Cancer and vitamin D supplementation: a systematic review and meta-analysis. The American journal of clinical nutrition107(4), 652-663. https://doi.org/10.1016/j.cct.2017.11.015

Lee, J.H., O’Keefe, J.H., Bell, D., Hensrud, D.D., Holick, M.F. (2008). Vitamin D deficiency: An important, common, and easily treatable cardiovascular risk factor? J Am Coll Cardio, 52(24), 1949-1956.

Kwok, T., Chook, P., Qiao, M., Tam, L., Poon, Y. K. P., Ahuja, A. T., ... & Woo, K. S. (2012). Vitamin B-12 supplementation improves arterial function in vegetarians with subnormal vitamin B-12 status. The journal of nutrition, health & aging16(6), 569-573. Abstract

Pannérec, A., Migliavacca, E., De Castro, A., Michaud, J., Karaz, S., Goulet, L., ... & Feige, J. N. (2018). Vitamin B12 deficiency and impaired expression of amnionless during aging. Journal of cachexia, sarcopenia and muscle9(1), 41-52. Article

Sae‐Lee, C., Corsi, S., Barrow, T. M., Kuhnle, G. G., Bollati, V., Mathers, J. C., & Byun, H. M. (2018). Dietary intervention modifies DNA methylation age assessed by the epigenetic clock. Molecular Nutrition & Food Research, 62(23), 1800092. https://doi.org/10.1002/mnfr.201800092

Thomas, P., & Fenech, M. (2015). Buccal Cytome Biomarkers and Their Association with Plasma Folate, Vitamin B12 and Homocysteine in Alzheimer's Disease. Lifestyle Genomics8(2), 57-69. https://doi.org/10.1159/000435784

Uday, S., & Högler, W. (2018). Prevention of rickets and osteomalacia in the UK: political action overdue. Archives of disease in childhood103(9), 901-906. Abstract

Walsh, S. P. K. (2018). Why foods derived from animals are not necessary for human health. Ethical Vegetarianism and Veganism, 19-33. Chapter11

Watson, J., Lee, M., & Garcia-Casal, M. N. (2018). Consequences of Inadequate Intakes of Vitamin A, Vitamin B 12, Vitamin D, Calcium, Iron, and Folate in Older Persons. Current geriatrics reports7(2), 103-113. Abstract

Greens and Red Beet Root: Dietary Nitrate (blood flow, heart, brain, and strong exercise)

Aquilano, K., Baldelli, S., Rotilio, G., & Ciriolo, M. R. (2008). Role of nitric oxide synthases in Parkinson’s disease: a review on the antioxidant and anti-inflammatory activity of polyphenols. Neurochemical research33(12), 2416-2426. Abstract

Ashton, N., Lind, E., Fiddler, J., & Fiddler, R. (2018). Beetroot Juice Supplementation Lowers Oxygen Cost of Vigorous Intensity Aerobic Exercise in Trained Endurance Athletes. In International Journal of Exercise Science: Conference Proceedings (Vol. 9, No. 6, p. 3). Abstract

Avoort, C. M., Loon, L. J., Hopman, M. T., & Verdijk, L. B. (2018). Increasing vegetable intake to obtain the health promoting and ergogenic effects of dietary nitrate. European journal of clinical nutrition, 1. Abstract

Balsalobre-Fernández, C., Romero-Moraleda, B., Cupeiro, R., Peinado, A. B., Butragueño, J., & Benito, P. J. (2018). The effects of beetroot juice supplementation on exercise economy, rating of perceived exertion and running mechanics in elite distance runners: A double-blinded, randomized study. PloS one13(7), e0200517. Article

Blekkenhorst, L., Sim, M., Bondonno, C., Bondonno, N., Ward, N., Prince, R., ... & Hodgson, J. (2018). Cardiovascular health benefits of specific vegetable types: A narrative review. Nutrients10(5), 595. Article

Catsicas, R. (2018). Fabulous vegetables!. Diabetes Lifestyle2018(2), 18-23. Abstract

Cuenca, E., Jodra, P., Pérez-López, A., González-Rodríguez, L., Fernandes da Silva, S., Veiga-Herreros, P., & Domínguez, R. (2018). Effects of Beetroot Juice Supplementation on Performance and Fatigue in a 30-s All-Out Sprint Exercise: A Randomized, Double-Blind Cross-Over Study. Nutrients10(9), 1222. Abstract

Chen, G. C., Koh, W. P., Yuan, J. M., Qin, L. Q., & van Dam, R. M. (2018). Green leafy and cruciferous vegetable consumption and risk of type 2 diabetes: results from the Singapore Chinese Health Study and meta-analysis. British Journal of Nutrition119(9), 1057-1067. Abstract

Dai, Q., Borenstein, A. R., Wu, Y., Jackson, J. C., & Larson, E. B. (2006). Fruit and vegetable juices and Alzheimer’s disease: the Kame Project. The American journal of medicine119(9), 751-759. https://doi.org/10.1016/j.amjmed.2006.03.045

Jonvik, K. L., Nyakayiru, J., Van Dijk, J. W., Maase, K., Ballak, S. B., Senden, J. M. G., ... & Verdijk, L. B. (2018). Repeated-sprint performance and plasma responses following beetroot juice supplementation do not differ between recreational, competitive and elite sprint athletes. European journal of sport science18(4), 524-533. Abstract

Letenneur, L., Proust-Lima, C., Le Gouge, A., Dartigues, J. F., & Barberger-Gateau, P. (2007). Flavonoid intake and cognitive decline over a 10-year period. American journal of epidemiology165(12), 1364-1371. https://doi.org/10.1093/aje/kwm036

Lidder, S., & Webb, A. J. (2013). Vascular effects of dietary nitrate (as found in green leafy vegetables and beetroot) via the nitrate‐nitrite‐nitric oxide pathway. British journal of clinical pharmacology75(3), 677-696. DOI: 10.1111/j.1365-2125.2012.04420.x

Morris, M. C., Wang, Y., Barnes, L. L., Bennett, D. A., Dawson-Hughes, B., & Booth, S. L. (2018). Nutrients and bioactives in green leafy vegetables and cognitive decline: Prospective study. Neurology90(3), e214-e222. Abstract

Murphy, M., Eliot, K., Heuertz, R. M., & Weiss, E. (2012). Whole beetroot consumption acutely improves running performance. Journal of the Academy of Nutrition and Dietetics112(4), 548-552. DOI:10.1016/j.jand.2011.12.002

Sobko, T., Marcus, C., Govoni, M., & Kamiya, S. (2010). Dietary nitrate in Japanese traditional foods lowers diastolic blood pressure in healthy volunteers. Nitric Oxide22(2), 136-140. DOI:

 10.1016/j.niox.2009.10.007

Liu, A. H., Bondonno, C. P., Croft, K. D., Puddey, I. B., Woodman, R. J., Rich, L., ... & Hodgson, J. M. (2013). Effects of a nitrate-rich meal on arterial stiffness and blood pressure in healthy volunteers. Nitric Oxide35, 123-130. DOI:10.1016/j.niox.2013.10.001

Shahidi, F., & Yeo, J. (2018). Bioactivities of phenolics by focusing on suppression of chronic diseases: A review. International journal of molecular sciences, 19(6), 1573.

 https://www.mdpi.com/1422-0067/19/6/1573

Tan, R., Wylie, L. J., Thompson, C., Blackwell, J. R., Bailey, S. J., Vanhatalo, A., & Jones, A. M. (2018). Beetroot juice ingestion during prolonged moderate-intensity exercise attenuates progressive rise in O2 uptake. Journal of Applied Physiology124(5), 1254-1263. Abstract

Vyas, M. (2017). Nutritional profile of spinach and its antioxidant & antidiabetic evaluation. International Journal of Green Pharmacy (IJGP)11(03). Abstract

Cranberry: Heart, liver, and Oral Health

Lapshina, E.A., Zamaraeva, M., Cheshchevik, V.T., Olchowik-Grabarek, E., Sekowski, S., Zukowska, I., … Zavodnik, I.B. (2015).Cranberry flavonoids prevent toxic rat liver mitochondrial damage in vivo and scavenge free radicals in vitro.Cell Miochem Funct, 33(4), 202-210.

Novotny, J., Baer, D.J., Khoo, C., Gebauer, S.K., & Charron, C.S. (2015). Cranberry juice consumption lowers markers of cardiometabliolic risk, including blood pressure and circulating C-reactive protein, triglyceride, and glucose concentrations in adults. J Nutr, 145(6), 1185-93.

Cranberry proanthocyanidins inhibit the adherence properties of Candida albicans and cytokine secretion by oral epithelial cells.

Feldman M, Tanabe S, Howell A, Grenier D. BMC Complement Altern Med. 2012 Jan 16; 12:6. Epub 2012 Jan 16. DOI:10.1186/1472-6882-12-6

Polyphenols and Metabolic Syndrome Support

Basu A. Lyons TJ. (2012). Strawberries, blueberries, and cranberries in the metabolic syndrome: clinical perspectives. J Agric Food Chem, 60, 5687-92.

Li, S., Tan, H. Y., Wang, N., Cheung, F., Hong, M., & Feng, Y. (2018). The potential and action mechanism of polyphenols in the treatment of liver diseases. Oxidative medicine and cellular longevity2018. https://doi.org/10.1155/2018/8394818

Raustadottir, T., Davies, S.S., Stock, A.A., Su, Y., Heward, C.B., Roberts, L.J. 2nd, Hrman, S.M. (2009). Tart cherry juice decreases oxidative stress in healthy older men and women. J Nutr, 139, 1896-1900.

Törrönen, R., Kolehmainen, M., Sarkkinen, E., Poutanen, K., Mykkänen, H., & Niskanen, L. (2013). Berries Reduce Postprandial Insulin Responses to Wheat and Rye Breads in Healthy Women1–4. The Journal of nutrition143(4), 430-436. DOI: 10.3945/jn.112.169771

Sievenpiper, J.L., Chiavaroli, L., de Souza, R.J., Mirrahimi, A., Cozma, A.I., Ha, V., … Jenkins, D.J. (2012). 'Catalytic' doses of fructose may benefit glycaemic control without harming cardiometabolic risk factors: a small meta-analysis of randomised controlled feeding trials. Br J Nutr, 108(3), 418-23.

Zulet, M. A. Fruit Fiber Consumption Specifically Improves Liver Health Status in Obese Subjects under Energy Restriction. Precision Nutrition and Metabolic Syndrome Management, 55.Booklet

Super Blend: Probiotics, Supernatant, ORNs, & Fiber

Bozzetto, L., Costabile, G., Della Pepa, G., Ciciola, P., Vetrani, C., Vitale, M., ... & Annuzzi, G. (2018). Dietary fibre as a unifying remedy for the whole spectrum of obesity-associated cardiovascular risk. Nutrients10(7), 943. DOI:10.3390/nu10070943

González-Herrera, S. M., Herrera, R. R., López, M. G., Rutiaga, O. M., Aguilar, C. N., Esquivel, J. C. C., & Martínez, L. A. O. (2015). Inulin in food products: prebiotic and functional ingredient. British Food Journal117(1), 371-387. Abstract

Holscher, H. D. (2017). Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes8(2), 172-184. https://doi.org/10.1080/19490976.2017.1290756

McRae, M. P. (2018). The Benefits of Dietary Fiber Intake on Reducing the Risk of Cancer: An Umbrella Review of Meta-analyses. Journal of Chiropractic Medicine17(2), 90-96. https://doi.org/10.1016/j.jcm.2017.12.001

Muir, J. G., Yao, C. K., & Gibson, P. G. (2015). Functional short-chain carbohydrates (prebiotics) in the diet to improve the microbiome and health of the gastrointestinal tract. Animal Production Science55(12), 1376-1380. Abstract

Post, R. E., Mainous, A. G., King, D. E., & Simpson, K. N. (2012). Dietary fiber for the treatment of type 2 diabetes mellitus: a meta-analysis. The Journal of the American Board of Family Medicine25(1), 16-23. DOI:10.3122/jabfm.2012.01.110148

Roberfroid, M., Gibson, G. R., Hoyles, L., McCartney, A. L., Rastall, R., Rowland, I., ... & Guarner, F. (2010). Prebiotic effects: metabolic and health benefits. British Journal of Nutrition, 104(S2), S1-S63. DOI:10.1017/S0007114510003363

Tiihonen, K., Ouwehand, A. C., & Rautonen, N. (2010). Human intestinal microbiota and healthy ageing. Ageing research reviews9(2), 107-116. https://doi.org/10.1016/j.arr.2009.10.004

Longevity and Plant-Based Diet

American Heart Association. (2017, March 09). Unhealthy diets linked to more than 400,000 cardiovascular deaths [AHA/ASA Newsroom]. Retrieved from Article

Biagi, E., Candela, M., Turroni, S., Garagnani, P., Franceschi, C., & Brigidi, P. (2013). Ageing and gut microbes: perspectives for health maintenance and longevity. Pharmacological Research69(1), 11-20. https://doi.org/10.1016/j.phrs.2012.10.005

Bozzetto, L., Costabile, G., Della Pepa, G., Ciciola, P., Vetrani, C., Vitale, M., ... & Annuzzi, G. (2018). Dietary fibre as a unifying remedy for the whole spectrum of obesity-associated cardiovascular risk. Nutrients10(7), 943. DOI:10.3390/nu10070943

Calder, P. C., Bosco, N., Bourdet-Sicard, R., Capuron, L., Delzenne, N., Doré, J., ... & Visioli, F. (2017). Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing research reviews40, 95-119. Article

Caprara, G. (2018). Diet and longevity: The effects of traditional eating habits on human lifespan extension. Mediterranean Journal of Nutrition and Metabolism, (Preprint), 1-34. Abstract

Desmond, M. A., Sobiecki, J., Fewtrell, M., & Wells, J. C. (2018). Plant-based diets for children as a means of improving adult cardiometabolic health. Nutrition reviews76(4), 260-273. https://doi.org/10.1093/nutrit/nux079

Donoiu, I., Militaru, C., Obleagă, O., Hunter, J. M., Neamţu, J., Biţă, A., ... & Rogoveanu, O. C. (2018). Effects of Boron-Containing Compounds on Cardiovascular Disease Risk Factors–A Review. Journal of Trace Elements in Medicine and Biology. Abstract

Filosa, S., Di Meo, F., & Crispi, S. (2018). Polyphenols-gut microbiota interplay and brain neuromodulation. Neural regeneration research13(12), 2055. Article

Holscher, H. D. (2017). Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes8(2), 172-184. https://doi.org/10.1080/19490976.2017.1290756

Le Couteur, D. G., Solon-Biet, S., Wahl, D., Cogger, V. C., Willcox, B. J., Willcox, D. C., ... & Simpson, S. J. (2016). New Horizons: Dietary protein, ageing and the Okinawan ratio. Age and ageing45(4), 443-447. Article

McMacken, M., & Shah, S. (2017). A plant-based diet for the prevention and treatment of type 2 diabetes. Journal of geriatric cardiology: JGC14(5), 342. Article

Seidelmann, S. B., Claggett, B., Cheng, S., Henglin, M., Shah, A., Steffen, L. M., ... & Solomon, S. D. (2018). Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. The Lancet Public Health3(9), e419-e428. Article

Tuso, P. J., Ismail, M. H., Ha, B. P., & Bartolotto, C. (2013). Nutritional update for physicians: plant-based diets. The Permanente Journal17(2), 61. Article

Zamora-Ros, R., Rabassa, M., Cherubini, A., Urpí-Sardà, M., Bandinelli, S., Ferrucci, L., & Andres-Lacueva, C. (2013). High Concentrations of a Urinary Biomarker of Polyphenol Intake Are Associated with Decreased Mortality in Older Adults, 2. The Journal of nutrition143(9), 1445-1450. Article

 

 

Ingredients

Ingredients

No. 7 Systemic Booster:  The New Longevity

A Proprietary blend of:                                     5grams                                             

Phytonutrients- Organic fruits, berries, vegetables & greens: Strawberry, Raspberry, Blueberry, Tart Cherry, Elderberry, Cranberry, Apple Extract, Pineapple, Beet, Kale Leaves, Spinach Leaves, Broccoli Floret.

BioImmersion Probiotic Master BlendProbiotics- Bifidobacterium longum, Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus bulgaricus and streptococcus thermophilus; Prebiotic- Inulin from chicory Root; Supernatant- probiotic metabolites, and ORNs. 30 billion CFU.

Fiber- Organic Inulin

Nutriceuticals- Fructo Borate 125mg, Vit. B-12 (methyl cobalamin) 250mcg, Vit. D3 1000IU, Folate 400mg, Chromium polynicotinate (trivalent with nicotimic acid) 250mcg.                                                                                       

Capsule- Cellulose & Water

Suggested Use

Suggested Use

NO. 7 SYSTEMIC BOOSTER: THE NEW LONGEVITY— The No 7 is designed to renew and revitalize, turning on the longevity genes.*

The new longevity: In research, aging is linked to a variety of chronic illnesses occur due to a continual inflammatory state in the body, which accelerates stem cells’ deterioration and ultimately lessens our ability to regenerate. The No 7 mix of polyphenols (berries, fruits, veggies, and greens), fibers, bio available nutraceuticals, prebiotic, and whole, naturally occurring probiotics with their supernatant and ORNs – all offer potent calming nutrients. Remember, we only have a limited number of stem cells.

System boost: The No 7 provides a boost of nutrients for many systems in the body: The GI Tract, Urogenital, Osteo-skeletal, Cardiovascular, Brain and Neurological, Detoxification, Metabolic, Digestive, and Energy. Take 1-2 teaspoons a day, mix with water or dissolve in the mouth. Add to Beta Glucan and Be Regular in your morning smoothie for added energy.*

Immunity: The No 7 offers extra support during the cold and flu season, and especially helpful taken with Garlic. For a sore throat, open up 1-2 capsules of garlic into a cup of water, add 1 teaspoon of No 7, mix and drink.*

Energy: Add Energy (Ultra Minerals & Apple Extract) and Weight-Less for added vitality. 1-2 capsules each.*

Weight-Loss: Add Weight-Less (1-2 capsules twice daily).*

Detoxification: The No 7 is foundational for a detox program. Our detox protocol: 4-8 caps of Chlorella, 1-2 caps of Glucosamine & Sulforaphanes (broccoli cruciferous sprouts) for phase II liver detox, Phyto Power to regenerate brain and nerves, flush kidneys, an detox the liver, and Energy for added ultra-minerals.* 

Gut Health: The No 7 is a calming and restorative formula for the whole GI Tract.*

Travel: Take 1 teaspoon a day during travel along with Cranberry Pomegranate, and Chlorella.*

Our Favorite: The No 7 is so versatile and powerful. This is Dr. Dohrea Bardell’s second favorite product alongside the Blueberry Extract. It has all her favorite nutrients!*

 

Reviews