Anti-carcinogenic Support
Dear Friends
Phyto Power is formulated with several species of blueberry, rosehip, and dandelion, shown in research to support DNA and cellular integrity, suppressing or interfering with oncogenic transformation, bolstering antioxidant and anti-inflammatory defenses, and contributing significantly to nerve re-generation.
Blueberries, rose hip, and dandelion are showing great potential in research on many different cancers, such as gastrointestinal tract (Bishayee et al., 2016), breast (Jeyabalan et al., 2014; Adams et al., 2010; Ries-Filho, 2008), brain (Cagle et al., 2012), breast and prostate (Sigsted et al., 2008), skin cancers (Chatterjee et al., 1011; Aggarwal et al., 2004), colon (Jiménez et al., 2016), and more.
Plant phenols have been researched for many years. Johnson et al. (1994) found plants and their biologically active constituents contribute protective and anti-carcinogenic effects (see Table 1, p. 193).
More recently, Zhan et al. (2016) found that blueberries effect the migration, invasion, proliferation and cell cycle and apoptosis in hepatocellular carcinoma cells. Li et al. (2009), Seeram, (2008), and Serram et al. (2006) have researched different berries for many years to discover their effect on a variety of cancer cells. Yang & Li (2015) have shown that dandelion extract protects human skin fibroblast from UVB damage, while Sigstedt et al. (2008) studies dandelion leaves, flower and roots and their anti-carcinogenic effect on breast and prostate cancers. Rosehip is found to have antiproliferative and anti-oxidant effect (Jiménez et al., 2016), as well as reduce brain tumor proliferation and apoptosis (Cagle, 2012).
Phyto Power utilizes several varieties and the whole plants of blueberries, rosehips, and dandelions. Grown in remote regions of Alaska, these plants and berries are more powerful with high actives due to the pure, harsh and challenging environment of Alaska (Grace et al., 2014; Youself et al., 2013; Dinstel et al., 2013).
Phyto Power is a wildcrafted wonder! Take 1-2 capsules a day.
References
- Adams, L.S., Phung, S. Yee, N., Sheeram, N.P., Li, L., & Chen, S. (2010).Blueberry phytochemicals inhibit growth and metastatic potential of MDA-MB-231 breast cancer cells through modulation of the phosphatidylinositol 3-kinase pathway. Cancer Res, 70(9), 3594-605.DOI: 10.1158/0008-5472.CAN-09-3565
- Aggarwal, B. B., Bhardwaj, A., Aggarwal, R. S., Seeram, N. P., Shishodia, S., & Takada, Y. (2004). Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer research, 24(5A), 2783-2840.
- Bishayee, A., Haskell, Y., Do, C., Siveen, K.S., Mohandas, N., Sethi, & G., Stoner, G.D. (2016). Potential Benefits of Edible Berries in the Management of Aerodigestive and Gastrointestinal Tract Cancers: Preclinical and Clinical Evidence. Crit Rev Food Sci Nutr, 56(10), 1753-75. DOI: 10.1080/10408398.2014.982243
- Cagle, P., Idassi, O., Carpenter, J., Minor, R., Goktepe, I., & Martin, P. (2012). Effect of Rosehip (Rosa canina) extracts on human brain tumor cell proliferation and apoptosis. Journal of Cancer Therapy, 3(5), 13. . DOI:10.4236/jct.2012.35069
- Chatterjee, S.J., Ovadje, P. Mousa, M., Hamm, C., & Pandey, S. (2011). The efficacy of dandelion root extract in inducing apoptosis in drug-resistant human melanoma cells. Evid Based Complement Alternat Med, 129045.DOI: 10.1155/2011/129045
- Dinstel R.R., Cascio J., & Koukel S. (2013). The antioxidant level of Alaska’s wild berries: high, higher and highest. Int J Circumpolar Health, 72. DOI: 10.3402/ijch.v72i0.21188
- Grace, M.H., Esposito D., Dunlap K.L., & Lila M.A. (2014). Comparative analysis of phenolic content and profile, antioxidant capacity, and anti-inflammatory bioactivity in wild Alaskan and commercial Vaccinium berries. J Agric Food Chem, 62(18), 4007-17. doi:10.1021/jf403810y . Johnson, I.T., Williamson, G., & Musk, S.R.R. (1994). Anticarcinogenic factors in plant foods: A new class of nutrients?Nutr Res Rev,7, 175–204. DOI: 10.1079/NRR19940011
- Jeyabalan, J., Aqil, F., Munagala, R., Annamalai, L., Vadhanam, M.V., Gupta, R.C. (2014). Chemopreventive and therapeutic activity of dietary blueberry against estrogen-mediated breast cancer.J. Agric. Food Chem, 62, 3963-3971. DOI: 10.1021/jf403734j
- Li, L., Adams, L.S., Chen, S., Killan, C., Ahmed, A., & Seeram, N.P. (2009). Eugenia jambolana Lam. [purple berries] berry extract inhibits growth and induces apoptosis of human breast cancer but not non-tumorigenic breast cells. J Agric Food Chem, 57(3), 826-31. DOI: 10.1021/jf803407q
- Seeram N.P. (2008). Berry fruits for cancer prevention: current status and future prospects. J Agric Food Chem; 56(3): 630-5. DOI: 10.1021/jf072504n
- Seeram, N.P., Adam, L.S., Zhang, Y., Lee, R., Sand, D., Scheuller, H.S., & Heber, D. (2006). Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J Agric Food Chem, 54 (25), 9329-39.DOI: 10.1021/jf061750g
- Sigstedt, S.C., Hooten, C.J., Callewaert, M.C., Jenkins, A.R., Romero, A.E., Pullin, M.J…. Steelant, W.F. (2008). Evaluation of aqueous extracts of Taraxacum officinale on growth and invasion of breast and prostate cancer cells. Int J Oncol. 32(5), 1085-90. https://doi.org/10.3892/ijo.32.5.1085
- Yang, Y., & Li, S. (2015). Dandelion extracts protect human skin fibroblasts from UVB damage and cellular senescence. Oxid Med Cell Longev, 619560. http://dx.doi.org/10.1155/2015/619560
- Yousef, G.G., Brown, A.F., Funakoshi, Y., Mbeunkui, F., Grace, M.H., Ballington, J.R., Loraine, A., & Lila, M.A. (2013). Efficient quantification of the health-relevant anthocyanin and phenolic acid profiles in commercial cultivars and breeding selections of blueberries (Vaccinium spp.). J Agric Food Chem, 61(20), 4806-15. DOI: 10.1021/jf400823s
- Zhan, W., Liao, X., Yu, L., Tian, T., Liu, X, Liu, J., … Yang, Q. (2016). Effects of blueberries on migration, invasion, proliferation, the cell cycle and apoptosis in hepatocellular carcinoma cells.Biomed Rep, 5(5), 579-584. DOI: 10.3892/br.2016.774
Sincerely yours,
Seann
We have developed our products based on scientific research and/or the practical experience of many healthcare practitioners. There is a growing body of literature on food based nutrition and supplements and their application in support of our health. Please use our products under the advisement of your doctor.
Green Facts:
Alaskan berries are known for their phenolic power:
Dinstel R.R., Cascio J., & Koukel S. (2013). The antioxidant level of Alaska’s wild berries: high, higher and highest. Int J Circumpolar Health, 72. DOI: 10.3402/ijch.v72i0.21188 In the last few years, antioxidants have become the stars of the nutritional world. Antioxidants are important in terms of their ability to protect against oxidative cell damage that can lead to conditions, such as Alzheimer’s disease, cancer and heart disease – conditions also linked with chronic inflammation. The antioxidant and anti-inflammatory effects of Alaska’s wild berries may have the potential to help prevent these diseases. Objective: To discover the antioxidant levels of Alaska wild berries and the ways these antioxidant levels translate when preservation methods are applied to the berry. Design: This research centred on both the raw berries and products made from the berries. In the first year, a variety of wild berries were tested to discover their oxygen radical absorption capacity (ORAC) in the raw berries. The second level of the research project processed 4 different berries – blueberries, lingonberries, salmonberries, highbush cranberries – into 8 or 9 products made from these berries. The products were tested for both ORAC as well as specific antioxidants. Results: The Alaska wild berries collected and tested in the first experiment ranged from 3 to 5 times higher in ORAC value than cultivated berries from the lower 48 states. For instance, cultivated blueberries have an ORAC scale of 30. Alaska wild dwarf blueberries measure 85. This is also higher than lower 48 wild blueberries, which had a score of 61. All of the Alaskan berries tested have a level of antioxidant considered nutritionally valuable, ranging from 19 for watermelon berries to 206 for lingonberries on the ORAC scale. With the processed products made from 4 Alaska wild berries, one of the unexpected outcomes of the research was that the berries continued to have levels of antioxidants considered high, despite the effects of commonly used heat-processing techniques. When berries were dehydrated, per gram ORAC values increased. Conclusion: Alaska wild berries have extraordinarily high antioxidant levels. Though cooking lowered the antioxidant level, and adding ingredients such as sugar diluted the antioxidant concentration, products made from berries are high sources of antioxidants.
|
©2005 – 2017 BioImmersion Inc. All Rights Reserved
|