Chromium, with Beet
Metabolic & Vascular Support
New Chromium with High Active Red Beet Root is 9 time stronger, with 50mcg of elemental trivalent chromium (whole molecule is 500mcg). The ligand on each of the new trivalent chromium is a molecule of nicotinic acid – Niacin.
Chromium is well represented in scientific literature with findings on cardiovascular health, including blood sugar metabolism and weight loss support (Hua et al., 2012; Wright & Hunter, 2014; Kim, 2018; Nair, 2019).*
High Active beet root offers a standardized 10,000ppm plant nitrate, which the body converts to nitric oxides (McDonagh et al., 2018). Beets promote nitric oxide bioavailability, which is shown in research to relax blood vessel muscles and open up circulation. Beets are reputed to be heart healthy, enhancing phase II liver enzyme (our body detoxification pathway), weight loss, and energizing the body with more oxygen (Hobbs et al., 2012; Beals et al., 2017; Krajka-Kuźniak et al., 2013; Clifford et al., 2015).
- Description
- Research
- Ingredients
-
Protocol
A potent form of trivalent chromium presented in a food-derived organic carrier of Niacin. Each capsule provides 500 micrograms of trivalent chromium polynicotinate (50mcg of elemental chromium) and 250 mg of High Active red beet root with a standardized 10,000ppm plant nitrate, which the body converts to nitric oxides (McDonagh et al., 2018).
Patented Technology creates a potent new form of trivalent Chromium (US patent) presented in a food-derived organic carrier.
- Superior activity to other forms of Chromium: safe, stable, and water-soluble.
- Glucose metabolism: Chromium with High Active Beet Root improves insulin efficiency by decreasing insulin resistance, increase glucose uptake in the absence of insulin, lowers glycosolated hemoglobin levels, reduce both fasting and postprandial hyperglycemia (Abdollahi et al., 2013; Abraham et al., 1992; Aghdassi et al., 2010; Anderson, 1998; Balk et al., 2007; Cefalu & Hu, 2004; 2013; Maret, 2019).
- Cardiovascular health: Chromium with High Active Beet Root improve metabolic syndrome, moderate hypertension and hypercholesterolemia, prevent lipid peroxidation, and support insulin sensitivity (Balk et al., 2007; Boyd, 2013; Hobbs et al., 2013; 2012; Jajja et al., 2014; Orhan et al., 2019; Panchal et al., 2017),
- Antioxidant, anti-carcinogenic, and anti-inflammatory activity (Nifali (2017).
- Weight management, Energy, and Stamina: Chromium with High Active Beet Root stimulates muscle growth, improves sports performance, aids in loss of body fat while helping maintain lean muscle mass, increase energy production and ability to exercise longer (Beals et al., 2017; Nifali, 2017; Crawford et al., 1999; Onakpoya et al., 2013.
- Beetroot protects against toxicity in liver, and initiates phase II enzyme detox (Krajka-Kuźniak et al., 2013; 2012; Lee et al., 2005)
- Beet also contain betalains, which research shows reduce isoprostanes by 30% in humans. Betalains neutralize highly oxidative hypochlorous acid generated in bloodstream, betalains are bioavailable and 3-4 times more potent antioxidants than Vitamin C, betalains induce phase 2 proteins (P2P function as internal defense system again toxins and free radicals).
- Advanced drying technology. No excipients, fillers, or flowing agents. 60 capsules per bottle. 500 mg per vegetarian capsule. Vegan, Gluten Free, Kosher.
FOOD SCIENCE: THE APPLICATION AND USE OF trivalent Chromium with Niacin as ligans, and Red Beet Root.*
Metabolic Syndrome: Insulin Sensitivity & Cardiovascular Health
Abdollahi, M., Farshchi, A., Nikfar, S., & Seyedifar, M. (2013). Effect of chromium on glucose and lipid profiles in patients with type 2 diabetes; a meta-analysis review of randomized trials. Journal of Pharmacy & Pharmaceutical Sciences, 16(1), 99-114. Article
Abraham, A. S., Brooks, B. A., & Eylath, U. (1992). The effects of chromium supplementation on serum glucose and lipids in patients with and without non-insulin-dependent diabetes. Metabolism, 41(7), 768-771. Abstract
Aghdassi, E., Arendt, B. M., Salit, I. E., Mohammed, S. S., Jalali, P., Bondar, H., & Allard, J. P. (2010). In patients with HIV-infection, chromium supplementation improves insulin resistance and other metabolic abnormalities: a randomized, double-blind, placebo controlled trial. Current HIV Research, 8(2), 113-120. Abstract
Agustini, R., & Sanjaya, I. G. M. (2018, July). Determination of chromium content in various foodstuffs. In Proceedings (Vol. 1, No. 1, pp. 474-479). Article
Anderson, R. A. (1998). Chromium, glucose intolerance and diabetes. Journal of the American College of Nutrition, 17(6), 548-555. Abstract
Anderson, R. A., Cheng, N., Bryden, N. A., Polansky, M. M., Cheng, N., Chi, J., & Feng, J. (1997). Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes, 46(11), 1786-1791.Abstract
Balk, E. M., Tatsioni, A., Lichtenstein, A. H., Lau, J., & Pittas, A. G. (2007). Effect of chromium supplementation on glucose metabolism and lipids: a systematic review of randomized controlled trials. Diabetes care, 30(8), 2154-2163. Article
Boyd, M. (2013). The role of supplemental chromium on glucose intolerance and insulin resistance. Topics in Clinical Nutrition, 28(2), 171-180. Abstract
Cefalu, W. T., & Hu, F. B. (2013). Role of chromium in human health and in diabetes. Diabetes Care 2004; 27: 2741–2751. Diabetes care, 36(9), 2872. Article
Crawford, V., Scheckenbach, R., & Preuss, H. G. (1999). Effects of niacin‐bound chromium supplementation on body composition in overweight African‐American women. Diabetes, Obesity and Metabolism, 1(6), 331-337. Abstract
Deshmukh, N. S., Bagchi, M., Lau, F. C., & Bagchi, D. (2009). Safety of an oxygen-coordinated niacin-bound chromium (III) complex (NBC): II. Developmental toxicity study in rats. Journal of inorganic biochemistry, 103(12), 1755-1760. Article
EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). (2010). Scientific Opinion on the safety of trivalent chromium as a nutrient added for nutritional purposes to foodstuffs for particular nutritional uses and foods intended for the general population (including food supplements). EFSA Journal, 8(12), 1882. Article
Grant, K. E., Chandler, R. M., Castle, A. L., & Ivy, J. L. (1997). Chromium and exercise training: effect on obese women. Medicine and science in sports and exercise, 29(8), 992-998. Article
Hua, Y., Clark, S., Ren, J., & Sreejayan, N. (2012). Molecular mechanisms of chromium in alleviating insulin resistance. The Journal of Nutritional Biochemistry, 23(4), 313-319. Article
Irmak, M., ŞAHİN, N., Orhan, C., Tuzcu, M., Deeh, P. B. D., Yardim, M., ... & ŞAHİN, K. (2019). Combination of amylopectin and chromium form improves energy storage and reduces muscle fatigue in rats during exhaustive exercise. Turkish Journal of Veterinary and Animal Sciences, 43(1), 44-53. Article
Jeejeebhoy, K. N., Chu, R. C., Marliss, E. B., Greenberg, G. R., & Bruce-Robertson, A. (1977). Chromium deficiency, glucose intolerance, and neuropathy reversed by chromium supplementation, in a patient receiving long-term total parenteral nutrition. The American Journal of Clinical Nutrition, 30(4), 531-538. Abstract
Khan, J. A. (2019). Modulation of Hormonal, Oxidative Stress and Fatty Acids Profiling in Response to Glutamine and Chromium in Diabetic Rats. Journal of Pharmaceutical Research International, 1-8. Article
Kim, H. N., Kim, S. H., Eun, Y. M., & Song, S. W. (2018). Effects of zinc, magnesium, and chromium supplementation on cardiometabolic risk in adults with metabolic syndrome: A double-blind, placebo-controlled randomised trial. Journal of Trace Elements in Medicine and Biology, 48, 166-171. Abstract
Lau, F. C., Bagchi, M., Sen, C. K., & Bagchi, D. (2008). Nutrigenomic basis of beneficial effects of chromium (III) on obesity and diabetes. Molecular and cellular biochemistry, 317(1-2), 1-10. Article
Lee, N. A., & Reasner, C. A. (1994). Beneficial effect of chromium supplementation on serum triglyceride levels in NIDDM. Diabetes care, 17(12), 1449-1452. Abstract
Lefavi, R. G., Anderson, R. A., Keith, R. E., Wilson, G. D., McMillan, J. L., & Stone, M. H. (1992). Efficacy of chromium supplementation in athletes; emphasis on anabolism. International journal of sport nutrition, 2(2), 111-122. Article
Lin, C. C., & Huang, Y. L. (2015). Chromium, zinc and magnesium status in type 1 diabetes. Current Opinion in Clinical Nutrition & Metabolic Care, 18(6), 588-592. Abstract
Maret, W. (2019). Chromium Supplementation in Human Health, Metabolic Syndrome, and Diabetes. Essential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic, 19, 231. Book
Masironi, R. (1969). Trace elements and cardiovascular diseases. Bulletin of the World Health Organization, 40(2), 305. Article
Morris, B. W., Kouta, S., Robinson, R., MacNeil, S., & Heller, S. (2000). Chromium supplementation improves insulin resistance in patients with Type 2 diabetes mellitus. Diabetic Medicine, 17(9), 684-685. Article
Nussbaumerova, B., Rosolova, H., Krizek, M., Sefrna, F., Racek, J., Müller, L., & Sindberg, C. (2018). Chromium Supplementation Reduces Resting Heart Rate in Patients with Metabolic Syndrome and Impaired Glucose Tolerance. Biological trace element research, 1-8. Abstract
Nair, S. (2019). Metabolic effects of chromium—Potential molecular mechanisms. In The Nutritional Biochemistry of Chromium (III) (pp. 175-191). Elsevier. Abstract
Ngala, R. A., Awe, M. A., & Nsiah, P. (2018). The effects of plasma chromium on lipid profile, glucose metabolism and cardiovascular risk in type 2 diabetes mellitus. A case-control study. PloS one, 13(7), e0197977. Article
Olin, K. L., Stearns, D. M., Armstrong, W. H., & Keen, C. L. (1994). Comparative retention/absorption of 51chromium (51Cr) from 51Cr chloride, 51Cr nicotinate and 51Cr picolinate in a rat model. Trace Elements and Electrocytes, 11(4), 182-186. Abstract
Onakpoya, I., Posadzki, P., & Ernst, E. (2013). Chromium supplementation in overweight and obesity: a systematic review and meta‐analysis of randomized clinical trials. Obesity reviews, 14(6), 496-507. Abstract
Orhan, C., Kucuk, O., Tuzcu, M., Sahin, N., Komorowski, J. R., & Sahin, K. (2019). Effect of supplementing chromium histidinate and picolinate complexes along with biotin on insulin sensitivity and related metabolic indices in rats fed a high‐fat diet. Food science & nutrition, 7(1), 183-194. Article
Panchal, S. K., Wanyonyi, S., & Brown, L. (2017). Selenium, vanadium, and chromium as micronutrients to improve metabolic syndrome. Current hypertension reports, 19(3), 10. Abstract
Prasad, A. (2016). Role of chromium compounds in diabetes. Indian Journal of Pharmacy and Pharmacology, 3(1), 17-23. Article
Preuss, H. G., Echard, B., Clouatre, D., Bagchi, D., & Perricone, N. V. (2011). Niacin-bound chromium increases life span in Zucker Fatty Rats. Journal of inorganic biochemistry, 105(10), 1344-1349. Abstract
Preuss, H. G., Bagchi, D., & Bagchi, M. (2002). Protective effects of a novel niacin‐bound chromium complex and a grape seed proanthocyanidin extract on advancing age and various aspects of syndrome X. Annals of the New York Academy of Sciences, 957(1), 250-259. Article
Polansky, M. M., Bryden, N. A., & Anderson, R. A. (1993, February). Effects of form of chromium on chromium absorption. In FASEB JOURNAL (Vol. 7, No. 3, pp. A77-A77).
Sahin, K., Tuzcu, M., Orhan, C., Sahin, N., Kucuk, O., Ozercan, I. H., ... & Komorowski, J. R. (2013). Anti-diabetic activity of chromium picolinate and biotin in rats with type 2 diabetes induced by high-fat diet and streptozotocin. British Journal of Nutrition, 110(2), 197-205. Article
Seif, A. A. (2015). Chromium picolinate inhibits cholesterol-induced stimulation of platelet aggregation in hypercholesterolemic rats. Irish Journal of Medical Science (1971-), 184(2), 291-296. Abstract
Shara, M., Kincaid, A. E., Limpach, A. L., Sandstrom, R., Barrett, L., Norton, N., ... & Bagchi, M. (2007). Long-term safety evaluation of a novel oxygen-coordinated niacin-bound chromium (III) complex. Journal of inorganic biochemistry, 101(7), 1059-1069. Article
Shrivastava, R., Upreti, R. K., Seth, P. K., & Chaturvedi, U. C. (2002). Effects of chromium on the immune system. FEMS Immunology & Medical Microbiology, 34(1), 1-7. Article
Suksomboon, N., Poolsup, N., & Yuwanakorn, A. (2014). Systematic review and meta‐analysis of the efficacy and safety of chromium supplementation in diabetes. Journal of clinical pharmacy and therapeutics, 39(3), 292-306. Abstract
Swaroop, A., Bagchi, M., Preuss, H. G., Zafra-Stone, S., Ahmad, T., & Bagchi, D. (2019). Benefits of chromium (III) complexes in animal and human health. In The Nutritional Biochemistry of Chromium (III) (pp. 251-278). Elsevier. Abstract
Thomas, V. L., & Gropper, S. S. (1996). Effect of chromium nicotinic acid supplementation on selected cardiovascular disease risk factors. Biological trace element research, 55(3), 297-305. Abstract
Tsang, C., Taghizadeh, M., Aghabagheri, E., Asemi, Z., & Jafarnejad, S. (2019). A meta‐analysis of the effect of chromium supplementation on anthropometric indices of subjects with overweight or obesity. Clinical obesity, e12313. Abstract
Wilson, B. E., & Gondy, A. (1995). Effects of chromium supplementation on fasting insulin levels and lipid parameters in healthy, non-obese young subjects. Diabetes research and clinical practice, 28(3), 179-184. Abstract
World Health Organization. (1996). Trace elements in human nutrition and health. Article
Wright, N.J.D., Hunter, T. (2014). Evidence for use of chromium in treatement of pre-diabetes. Journal of Pharmaceutical and Scientific Innovation, p. 298-305. Article
Vincent, J.B. (2019). The nutritional biochemistry of Chromium (III). Amsterdam, Netherlands: Elsevier. Book
Vincent, J. B. (2018). Beneficial effects of chromium (III) and vanadium supplements in diabetes. In Nutritional and Therapeutic Interventions for Diabetes and Metabolic Syndrome (Second Edition) (pp. 365-374). Abstract
Vincent, J. B. (2004). Recent advances in the nutritional biochemistry of trivalent chromium. Proceedings of the Nutrition Society, 63(1), 41-47. Article
Wilson, B. E., & Gondy, A. (1995). Effects of chromium supplementation on fasting insulin levels and lipid parameters in healthy, non-obese young subjects. Diabetes research and clinical practice, 28(3), 179-184. Abstract
Cardiovascular Health with High Nitrate Beet Root
Beals, J.W., Binns, S.E., Davis, J.L., Giordano, G.R., Klochak, A.L., Paris, H.L. … Bell, C. (2017). Concurrent Beet Juice and Carbohydrate Ingestion: Influence on Glucose Tolerance in Obese and Nonobese Adults. J Nutr Metab, 2017:6436783. Article
Bond Jr, V., Curry, B. H., Adams, R. G., Millis, R. M., & Haddad, G. E. (2013). Cardiorespiratory function associated with dietary nitrate supplementation. Applied physiology, nutrition, and metabolism, 39(2), 168-172. Article
Buckley, J., Riley, M., Wood, L., Skeaff, S., & Noakes, M. (2018). Abstracts of the 10th Asia-Pacific Conference on Clinical Nutrition. Article
Clifford, T., Howatson, G., West, D.J., & Stevenson, E.J. (2015). The potential benefits of red beetroot supplementation in health and disease. Nutrients, 7(4), 2801-22. Article
Domínguez, R., Cuenca, E., Maté-Muñoz, J.L., García-Fernández, P., Serra-Paya, N., Estevan, M.C., Herreros, P.V., Garnacho-Castaño, M.V. (2017). Effects of Beetroot Juice Supplementation on Cardiorespiratory Endurance in Athletes. A Systematic Review. Nutrients, 9(1). Article
Engan, H. K., Jones, A. M., Ehrenberg, F., & Schagatay, E. (2012). Acute dietary nitrate supplementation improves dry static apnea performance. Respiratory physiology & neurobiology, 182(2-3), 53-59. Abstract
Hobbs, D. A., Goulding, M. G., Nguyen, A., Malaver, T., Walker, C. F., George, T. W., ... & Lovegrove, J. A. (2013). Acute Ingestion of Beetroot Bread Increases Endothelium-Independent Vasodilation and Lowers Diastolic Blood Pressure in Healthy Men: A Randomized Controlled Trial–4. The Journal of nutrition, 143(9), 1399-1405. Article
Hobbs, D. A., Kaffa, N., George, T. W., Methven, L., & Lovegrove, J. A. (2012). Blood pressure-lowering effects of beetroot juice and novel beetroot-enriched bread products in normotensive male subjects. British Journal of Nutrition, 108(11), 2066-2074. Article
Jajja, A., Sutyarjoko, A., Lara, J., Rennie, K., Brandt, K., Qadir, O., Siervo, M. (2014). Beetroot supplementation lowers daily systolic blood pressure in older, overweight subjects. Nutr Res. 34(10), 868-75. Article
Krajka-Kuźniak, V., Paluszczak, J., Szaefer, H., & Baer-Dubowska, W. (2013). Betanin, a beetroot component, induces nuclear factor erythroid-2-related factor 2-mediated expression of detoxifying/antioxidant enzymes in human liver cell lines. British Journal of Nutrition, 110(12), 2138-2149. Article
Krajka-Kuźniak, V., Szaefer, H., Ignatowicz, E., Adamska, T., & Baer-Dubowska, W. (2012). Beetroot juice protects against N-nitrosodiethylamine-induced liver injury in rats. Food and chemical toxicology, 50(6), 2027-2033. Article
Larsen, F. J., Schiffer, T. A., Borniquel, S., Sahlin, K., Ekblom, B., Lundberg, J. O., & Weitzberg, E. (2011). Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell metabolism, 13(2), 149-159. Article
Lee, C.H., Wettasinghe, M., Bolling, B.W., Ji, L.L., Parkin, K.L. (2005). Betalains, phase II enzyme-inducing components from red beetroot (Beta vulgaris L.) extracts. Nutr Cancer, 53(1), 91-103. Article
McDonagh, S. T., Wylie, L. J., Thompson, C., Vanhatalo, A., & Jones, A. M. (2019). Potential benefits of dietary nitrate ingestion in healthy and clinical populations: A brief review. European journal of sport science, 19(1), 15-29. Article
Ninfali P, Antonini E, Frati A, Scarpa ES. (2017). C-Glycosyl Flavonoids from Beta vulgaris Cicla and Betalains from Beta vulgaris rubra: Antioxidant, Anticancer and Antiinflammatory Activities-A Review. Phytother Res, 31(6), 871-884. Abstract
Siervo, M., Lara, J., Ogbonmwan, I., Mathers, J.C. (2013). Inorganic nitrate and beetroot juice supplementation reduces blood pressure in adults: a systematic review and meta-analysis. J Nutr, 143(6), 818-26. Article
Wootton-Beard, P.C., Brandt, K., Fell, D., Warner, S., Ryan, L. (2014). Effects of a beetroot juice with high neobetanin content on the early-phase insulin response in healthy volunteers. J Nutr Sci, 3:e9. Article
One Vegetarian Capsule Contains:
Trivalent Chromium 500mcg nucleotides from Brewer's yeast as ligands.
Red Beet Root Powder 250mg organic, freeze-dried.
Other Ingredients: cellulose & water (capsule shell).
CHROMIUM— The Chromium with organic red beet root is designed to supports pre-diabetic and diabetic conditions.*
Pre-diabetic & diabetic support: Take 1 capsule twice a day to help improve blood sugar management. Chromium partners up with insulin to open up the cell door to receive glucose. Hence chromium helps overcome insulin resistance. An essential mineral for energy and circulation.*
Energy & sports: Chromium is an essential trace mineral for energy and circulation, and in combination with the red beetroot’s ability to increase nitric oxide, it is a perfect supplement for exercise. Take 1 capsule a day. Add Energy, Beta Glucan, and Be Regular for a sustained energy boost.*
Weight-Loss and heart health: Chromium is important mineral for fat and carbohydrate metabolism. Take 1 capsule a day. Add Weight-Less, 1-2 capsules twice daily for a smart weight loss.*
Our favorite: chromium is one of Seann’s favorite products, keeping his energy up for a long morning jog, along with Energy, Fructo Borate, Glucosinolates & Sulforaphanes, and No 7. His routine has been established over 12 years ago when we started the potent therapeutic foods supplement range.*
Description
A potent form of trivalent chromium presented in a food-derived organic carrier of Niacin. Each capsule provides 500 micrograms of trivalent chromium polynicotinate (50mcg of elemental chromium) and 250 mg of High Active red beet root with a standardized 10,000ppm plant nitrate, which the body converts to nitric oxides (McDonagh et al., 2018).
Patented Technology creates a potent new form of trivalent Chromium (US patent) presented in a food-derived organic carrier.
- Superior activity to other forms of Chromium: safe, stable, and water-soluble.
- Glucose metabolism: Chromium with High Active Beet Root improves insulin efficiency by decreasing insulin resistance, increase glucose uptake in the absence of insulin, lowers glycosolated hemoglobin levels, reduce both fasting and postprandial hyperglycemia (Abdollahi et al., 2013; Abraham et al., 1992; Aghdassi et al., 2010; Anderson, 1998; Balk et al., 2007; Cefalu & Hu, 2004; 2013; Maret, 2019).
- Cardiovascular health: Chromium with High Active Beet Root improve metabolic syndrome, moderate hypertension and hypercholesterolemia, prevent lipid peroxidation, and support insulin sensitivity (Balk et al., 2007; Boyd, 2013; Hobbs et al., 2013; 2012; Jajja et al., 2014; Orhan et al., 2019; Panchal et al., 2017),
- Antioxidant, anti-carcinogenic, and anti-inflammatory activity (Nifali (2017).
- Weight management, Energy, and Stamina: Chromium with High Active Beet Root stimulates muscle growth, improves sports performance, aids in loss of body fat while helping maintain lean muscle mass, increase energy production and ability to exercise longer (Beals et al., 2017; Nifali, 2017; Crawford et al., 1999; Onakpoya et al., 2013.
- Beetroot protects against toxicity in liver, and initiates phase II enzyme detox (Krajka-Kuźniak et al., 2013; 2012; Lee et al., 2005)
- Beet also contain betalains, which research shows reduce isoprostanes by 30% in humans. Betalains neutralize highly oxidative hypochlorous acid generated in bloodstream, betalains are bioavailable and 3-4 times more potent antioxidants than Vitamin C, betalains induce phase 2 proteins (P2P function as internal defense system again toxins and free radicals).
- Advanced drying technology. No excipients, fillers, or flowing agents. 60 capsules per bottle. 500 mg per vegetarian capsule. Vegan, Gluten Free, Kosher.
Research
FOOD SCIENCE: THE APPLICATION AND USE OF trivalent Chromium with Niacin as ligans, and Red Beet Root.*
Metabolic Syndrome: Insulin Sensitivity & Cardiovascular Health
Abdollahi, M., Farshchi, A., Nikfar, S., & Seyedifar, M. (2013). Effect of chromium on glucose and lipid profiles in patients with type 2 diabetes; a meta-analysis review of randomized trials. Journal of Pharmacy & Pharmaceutical Sciences, 16(1), 99-114. Article
Abraham, A. S., Brooks, B. A., & Eylath, U. (1992). The effects of chromium supplementation on serum glucose and lipids in patients with and without non-insulin-dependent diabetes. Metabolism, 41(7), 768-771. Abstract
Aghdassi, E., Arendt, B. M., Salit, I. E., Mohammed, S. S., Jalali, P., Bondar, H., & Allard, J. P. (2010). In patients with HIV-infection, chromium supplementation improves insulin resistance and other metabolic abnormalities: a randomized, double-blind, placebo controlled trial. Current HIV Research, 8(2), 113-120. Abstract
Agustini, R., & Sanjaya, I. G. M. (2018, July). Determination of chromium content in various foodstuffs. In Proceedings (Vol. 1, No. 1, pp. 474-479). Article
Anderson, R. A. (1998). Chromium, glucose intolerance and diabetes. Journal of the American College of Nutrition, 17(6), 548-555. Abstract
Anderson, R. A., Cheng, N., Bryden, N. A., Polansky, M. M., Cheng, N., Chi, J., & Feng, J. (1997). Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes, 46(11), 1786-1791.Abstract
Balk, E. M., Tatsioni, A., Lichtenstein, A. H., Lau, J., & Pittas, A. G. (2007). Effect of chromium supplementation on glucose metabolism and lipids: a systematic review of randomized controlled trials. Diabetes care, 30(8), 2154-2163. Article
Boyd, M. (2013). The role of supplemental chromium on glucose intolerance and insulin resistance. Topics in Clinical Nutrition, 28(2), 171-180. Abstract
Cefalu, W. T., & Hu, F. B. (2013). Role of chromium in human health and in diabetes. Diabetes Care 2004; 27: 2741–2751. Diabetes care, 36(9), 2872. Article
Crawford, V., Scheckenbach, R., & Preuss, H. G. (1999). Effects of niacin‐bound chromium supplementation on body composition in overweight African‐American women. Diabetes, Obesity and Metabolism, 1(6), 331-337. Abstract
Deshmukh, N. S., Bagchi, M., Lau, F. C., & Bagchi, D. (2009). Safety of an oxygen-coordinated niacin-bound chromium (III) complex (NBC): II. Developmental toxicity study in rats. Journal of inorganic biochemistry, 103(12), 1755-1760. Article
EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). (2010). Scientific Opinion on the safety of trivalent chromium as a nutrient added for nutritional purposes to foodstuffs for particular nutritional uses and foods intended for the general population (including food supplements). EFSA Journal, 8(12), 1882. Article
Grant, K. E., Chandler, R. M., Castle, A. L., & Ivy, J. L. (1997). Chromium and exercise training: effect on obese women. Medicine and science in sports and exercise, 29(8), 992-998. Article
Hua, Y., Clark, S., Ren, J., & Sreejayan, N. (2012). Molecular mechanisms of chromium in alleviating insulin resistance. The Journal of Nutritional Biochemistry, 23(4), 313-319. Article
Irmak, M., ŞAHİN, N., Orhan, C., Tuzcu, M., Deeh, P. B. D., Yardim, M., ... & ŞAHİN, K. (2019). Combination of amylopectin and chromium form improves energy storage and reduces muscle fatigue in rats during exhaustive exercise. Turkish Journal of Veterinary and Animal Sciences, 43(1), 44-53. Article
Jeejeebhoy, K. N., Chu, R. C., Marliss, E. B., Greenberg, G. R., & Bruce-Robertson, A. (1977). Chromium deficiency, glucose intolerance, and neuropathy reversed by chromium supplementation, in a patient receiving long-term total parenteral nutrition. The American Journal of Clinical Nutrition, 30(4), 531-538. Abstract
Khan, J. A. (2019). Modulation of Hormonal, Oxidative Stress and Fatty Acids Profiling in Response to Glutamine and Chromium in Diabetic Rats. Journal of Pharmaceutical Research International, 1-8. Article
Kim, H. N., Kim, S. H., Eun, Y. M., & Song, S. W. (2018). Effects of zinc, magnesium, and chromium supplementation on cardiometabolic risk in adults with metabolic syndrome: A double-blind, placebo-controlled randomised trial. Journal of Trace Elements in Medicine and Biology, 48, 166-171. Abstract
Lau, F. C., Bagchi, M., Sen, C. K., & Bagchi, D. (2008). Nutrigenomic basis of beneficial effects of chromium (III) on obesity and diabetes. Molecular and cellular biochemistry, 317(1-2), 1-10. Article
Lee, N. A., & Reasner, C. A. (1994). Beneficial effect of chromium supplementation on serum triglyceride levels in NIDDM. Diabetes care, 17(12), 1449-1452. Abstract
Lefavi, R. G., Anderson, R. A., Keith, R. E., Wilson, G. D., McMillan, J. L., & Stone, M. H. (1992). Efficacy of chromium supplementation in athletes; emphasis on anabolism. International journal of sport nutrition, 2(2), 111-122. Article
Lin, C. C., & Huang, Y. L. (2015). Chromium, zinc and magnesium status in type 1 diabetes. Current Opinion in Clinical Nutrition & Metabolic Care, 18(6), 588-592. Abstract
Maret, W. (2019). Chromium Supplementation in Human Health, Metabolic Syndrome, and Diabetes. Essential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic, 19, 231. Book
Masironi, R. (1969). Trace elements and cardiovascular diseases. Bulletin of the World Health Organization, 40(2), 305. Article
Morris, B. W., Kouta, S., Robinson, R., MacNeil, S., & Heller, S. (2000). Chromium supplementation improves insulin resistance in patients with Type 2 diabetes mellitus. Diabetic Medicine, 17(9), 684-685. Article
Nussbaumerova, B., Rosolova, H., Krizek, M., Sefrna, F., Racek, J., Müller, L., & Sindberg, C. (2018). Chromium Supplementation Reduces Resting Heart Rate in Patients with Metabolic Syndrome and Impaired Glucose Tolerance. Biological trace element research, 1-8. Abstract
Nair, S. (2019). Metabolic effects of chromium—Potential molecular mechanisms. In The Nutritional Biochemistry of Chromium (III) (pp. 175-191). Elsevier. Abstract
Ngala, R. A., Awe, M. A., & Nsiah, P. (2018). The effects of plasma chromium on lipid profile, glucose metabolism and cardiovascular risk in type 2 diabetes mellitus. A case-control study. PloS one, 13(7), e0197977. Article
Olin, K. L., Stearns, D. M., Armstrong, W. H., & Keen, C. L. (1994). Comparative retention/absorption of 51chromium (51Cr) from 51Cr chloride, 51Cr nicotinate and 51Cr picolinate in a rat model. Trace Elements and Electrocytes, 11(4), 182-186. Abstract
Onakpoya, I., Posadzki, P., & Ernst, E. (2013). Chromium supplementation in overweight and obesity: a systematic review and meta‐analysis of randomized clinical trials. Obesity reviews, 14(6), 496-507. Abstract
Orhan, C., Kucuk, O., Tuzcu, M., Sahin, N., Komorowski, J. R., & Sahin, K. (2019). Effect of supplementing chromium histidinate and picolinate complexes along with biotin on insulin sensitivity and related metabolic indices in rats fed a high‐fat diet. Food science & nutrition, 7(1), 183-194. Article
Panchal, S. K., Wanyonyi, S., & Brown, L. (2017). Selenium, vanadium, and chromium as micronutrients to improve metabolic syndrome. Current hypertension reports, 19(3), 10. Abstract
Prasad, A. (2016). Role of chromium compounds in diabetes. Indian Journal of Pharmacy and Pharmacology, 3(1), 17-23. Article
Preuss, H. G., Echard, B., Clouatre, D., Bagchi, D., & Perricone, N. V. (2011). Niacin-bound chromium increases life span in Zucker Fatty Rats. Journal of inorganic biochemistry, 105(10), 1344-1349. Abstract
Preuss, H. G., Bagchi, D., & Bagchi, M. (2002). Protective effects of a novel niacin‐bound chromium complex and a grape seed proanthocyanidin extract on advancing age and various aspects of syndrome X. Annals of the New York Academy of Sciences, 957(1), 250-259. Article
Polansky, M. M., Bryden, N. A., & Anderson, R. A. (1993, February). Effects of form of chromium on chromium absorption. In FASEB JOURNAL (Vol. 7, No. 3, pp. A77-A77).
Sahin, K., Tuzcu, M., Orhan, C., Sahin, N., Kucuk, O., Ozercan, I. H., ... & Komorowski, J. R. (2013). Anti-diabetic activity of chromium picolinate and biotin in rats with type 2 diabetes induced by high-fat diet and streptozotocin. British Journal of Nutrition, 110(2), 197-205. Article
Seif, A. A. (2015). Chromium picolinate inhibits cholesterol-induced stimulation of platelet aggregation in hypercholesterolemic rats. Irish Journal of Medical Science (1971-), 184(2), 291-296. Abstract
Shara, M., Kincaid, A. E., Limpach, A. L., Sandstrom, R., Barrett, L., Norton, N., ... & Bagchi, M. (2007). Long-term safety evaluation of a novel oxygen-coordinated niacin-bound chromium (III) complex. Journal of inorganic biochemistry, 101(7), 1059-1069. Article
Shrivastava, R., Upreti, R. K., Seth, P. K., & Chaturvedi, U. C. (2002). Effects of chromium on the immune system. FEMS Immunology & Medical Microbiology, 34(1), 1-7. Article
Suksomboon, N., Poolsup, N., & Yuwanakorn, A. (2014). Systematic review and meta‐analysis of the efficacy and safety of chromium supplementation in diabetes. Journal of clinical pharmacy and therapeutics, 39(3), 292-306. Abstract
Swaroop, A., Bagchi, M., Preuss, H. G., Zafra-Stone, S., Ahmad, T., & Bagchi, D. (2019). Benefits of chromium (III) complexes in animal and human health. In The Nutritional Biochemistry of Chromium (III) (pp. 251-278). Elsevier. Abstract
Thomas, V. L., & Gropper, S. S. (1996). Effect of chromium nicotinic acid supplementation on selected cardiovascular disease risk factors. Biological trace element research, 55(3), 297-305. Abstract
Tsang, C., Taghizadeh, M., Aghabagheri, E., Asemi, Z., & Jafarnejad, S. (2019). A meta‐analysis of the effect of chromium supplementation on anthropometric indices of subjects with overweight or obesity. Clinical obesity, e12313. Abstract
Wilson, B. E., & Gondy, A. (1995). Effects of chromium supplementation on fasting insulin levels and lipid parameters in healthy, non-obese young subjects. Diabetes research and clinical practice, 28(3), 179-184. Abstract
World Health Organization. (1996). Trace elements in human nutrition and health. Article
Wright, N.J.D., Hunter, T. (2014). Evidence for use of chromium in treatement of pre-diabetes. Journal of Pharmaceutical and Scientific Innovation, p. 298-305. Article
Vincent, J.B. (2019). The nutritional biochemistry of Chromium (III). Amsterdam, Netherlands: Elsevier. Book
Vincent, J. B. (2018). Beneficial effects of chromium (III) and vanadium supplements in diabetes. In Nutritional and Therapeutic Interventions for Diabetes and Metabolic Syndrome (Second Edition) (pp. 365-374). Abstract
Vincent, J. B. (2004). Recent advances in the nutritional biochemistry of trivalent chromium. Proceedings of the Nutrition Society, 63(1), 41-47. Article
Wilson, B. E., & Gondy, A. (1995). Effects of chromium supplementation on fasting insulin levels and lipid parameters in healthy, non-obese young subjects. Diabetes research and clinical practice, 28(3), 179-184. Abstract
Cardiovascular Health with High Nitrate Beet Root
Beals, J.W., Binns, S.E., Davis, J.L., Giordano, G.R., Klochak, A.L., Paris, H.L. … Bell, C. (2017). Concurrent Beet Juice and Carbohydrate Ingestion: Influence on Glucose Tolerance in Obese and Nonobese Adults. J Nutr Metab, 2017:6436783. Article
Bond Jr, V., Curry, B. H., Adams, R. G., Millis, R. M., & Haddad, G. E. (2013). Cardiorespiratory function associated with dietary nitrate supplementation. Applied physiology, nutrition, and metabolism, 39(2), 168-172. Article
Buckley, J., Riley, M., Wood, L., Skeaff, S., & Noakes, M. (2018). Abstracts of the 10th Asia-Pacific Conference on Clinical Nutrition. Article
Clifford, T., Howatson, G., West, D.J., & Stevenson, E.J. (2015). The potential benefits of red beetroot supplementation in health and disease. Nutrients, 7(4), 2801-22. Article
Domínguez, R., Cuenca, E., Maté-Muñoz, J.L., García-Fernández, P., Serra-Paya, N., Estevan, M.C., Herreros, P.V., Garnacho-Castaño, M.V. (2017). Effects of Beetroot Juice Supplementation on Cardiorespiratory Endurance in Athletes. A Systematic Review. Nutrients, 9(1). Article
Engan, H. K., Jones, A. M., Ehrenberg, F., & Schagatay, E. (2012). Acute dietary nitrate supplementation improves dry static apnea performance. Respiratory physiology & neurobiology, 182(2-3), 53-59. Abstract
Hobbs, D. A., Goulding, M. G., Nguyen, A., Malaver, T., Walker, C. F., George, T. W., ... & Lovegrove, J. A. (2013). Acute Ingestion of Beetroot Bread Increases Endothelium-Independent Vasodilation and Lowers Diastolic Blood Pressure in Healthy Men: A Randomized Controlled Trial–4. The Journal of nutrition, 143(9), 1399-1405. Article
Hobbs, D. A., Kaffa, N., George, T. W., Methven, L., & Lovegrove, J. A. (2012). Blood pressure-lowering effects of beetroot juice and novel beetroot-enriched bread products in normotensive male subjects. British Journal of Nutrition, 108(11), 2066-2074. Article
Jajja, A., Sutyarjoko, A., Lara, J., Rennie, K., Brandt, K., Qadir, O., Siervo, M. (2014). Beetroot supplementation lowers daily systolic blood pressure in older, overweight subjects. Nutr Res. 34(10), 868-75. Article
Krajka-Kuźniak, V., Paluszczak, J., Szaefer, H., & Baer-Dubowska, W. (2013). Betanin, a beetroot component, induces nuclear factor erythroid-2-related factor 2-mediated expression of detoxifying/antioxidant enzymes in human liver cell lines. British Journal of Nutrition, 110(12), 2138-2149. Article
Krajka-Kuźniak, V., Szaefer, H., Ignatowicz, E., Adamska, T., & Baer-Dubowska, W. (2012). Beetroot juice protects against N-nitrosodiethylamine-induced liver injury in rats. Food and chemical toxicology, 50(6), 2027-2033. Article
Larsen, F. J., Schiffer, T. A., Borniquel, S., Sahlin, K., Ekblom, B., Lundberg, J. O., & Weitzberg, E. (2011). Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell metabolism, 13(2), 149-159. Article
Lee, C.H., Wettasinghe, M., Bolling, B.W., Ji, L.L., Parkin, K.L. (2005). Betalains, phase II enzyme-inducing components from red beetroot (Beta vulgaris L.) extracts. Nutr Cancer, 53(1), 91-103. Article
McDonagh, S. T., Wylie, L. J., Thompson, C., Vanhatalo, A., & Jones, A. M. (2019). Potential benefits of dietary nitrate ingestion in healthy and clinical populations: A brief review. European journal of sport science, 19(1), 15-29. Article
Ninfali P, Antonini E, Frati A, Scarpa ES. (2017). C-Glycosyl Flavonoids from Beta vulgaris Cicla and Betalains from Beta vulgaris rubra: Antioxidant, Anticancer and Antiinflammatory Activities-A Review. Phytother Res, 31(6), 871-884. Abstract
Siervo, M., Lara, J., Ogbonmwan, I., Mathers, J.C. (2013). Inorganic nitrate and beetroot juice supplementation reduces blood pressure in adults: a systematic review and meta-analysis. J Nutr, 143(6), 818-26. Article
Wootton-Beard, P.C., Brandt, K., Fell, D., Warner, S., Ryan, L. (2014). Effects of a beetroot juice with high neobetanin content on the early-phase insulin response in healthy volunteers. J Nutr Sci, 3:e9. Article
Ingredients
One Vegetarian Capsule Contains:
Trivalent Chromium 500mcg nucleotides from Brewer's yeast as ligands.
Red Beet Root Powder 250mg organic, freeze-dried.
Other Ingredients: cellulose & water (capsule shell).
Protocol
CHROMIUM— The Chromium with organic red beet root is designed to supports pre-diabetic and diabetic conditions.*
Pre-diabetic & diabetic support: Take 1 capsule twice a day to help improve blood sugar management. Chromium partners up with insulin to open up the cell door to receive glucose. Hence chromium helps overcome insulin resistance. An essential mineral for energy and circulation.*
Energy & sports: Chromium is an essential trace mineral for energy and circulation, and in combination with the red beetroot’s ability to increase nitric oxide, it is a perfect supplement for exercise. Take 1 capsule a day. Add Energy, Beta Glucan, and Be Regular for a sustained energy boost.*
Weight-Loss and heart health: Chromium is important mineral for fat and carbohydrate metabolism. Take 1 capsule a day. Add Weight-Less, 1-2 capsules twice daily for a smart weight loss.*
Our favorite: chromium is one of Seann’s favorite products, keeping his energy up for a long morning jog, along with Energy, Fructo Borate, Glucosinolates & Sulforaphanes, and No 7. His routine has been established over 12 years ago when we started the potent therapeutic foods supplement range.*